
Texture
Readings: Ch 7: all of it plus Carson paper
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• Structural vs. Statistical Approaches
• Edge-Based Measures
• Local Binary Patterns
• Co-occurence Matrices
• Laws Filters & Gabor Filters
• Blobworld Texture Features that select scale



Texture

Texture is a description of the spatial arrangement of color or
intensities in an image or a selected region of an image.

Structural approach: a set of texels in some regular or repeated pattern
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Problem with Structural Approach

How do you decide what is a texel?

Ideas?
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Natural Textures from VisTex

grass leaves

What/Where are the texels? 4



The Case for Statistical Texture

• Segmenting out texels is difficult or impossible in real images.

• Numeric quantities or statistics that describe a texture can be
computed from the gray tones (or colors) alone.

• This approach is less intuitive, but is computationally efficient.

• It can be used for both classification and segmentation.

5



Some Simple Statistical Texture Measures

1.  Edge Density and Direction

• Use an edge detector as the first step in texture analysis.

• The number of edge pixels in a fixed-size region tells us
how busy that region is.

• The directions of the edges also help characterize the texture
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Two Edge-based Texture Measures

1.  edgeness per unit area

2. edge magnitude and direction histograms

Fedgeness =  |{ p |  gradient_magnitude(p) ≥ threshold}| / N

where N is the size of the unit area

Fmagdir = ( Hmagnitude, Hdirection )

where these are the normalized histograms of gradient
magnitudes and gradient directions, respectively.
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Original Image             Frei-Chen                 Thresholded
Edge Image                Edge Image

Example
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Local Binary Pattern Measure
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• For each pixel p, create an 8-bit number b1 b2 b3 b4 b5 b6 b7 b8,
where bi = 0 if neighbor i has value less than or equal to p’s
value and  1 otherwise.

• Represent the texture in the image (or a region) by the
histogram of these numbers.
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Fids (Flexible Image Database
System) is retrieving images
similar to the query image
using LBP texture as the
texture measure and comparing
their LBP histograms

Example
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Low-level
measures don’t
always find
semantically
similar images.

Example
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Co-occurrence Matrix Features

A co-occurrence matrix is a 2D array C in which

• Both the rows and columns represent a set of possible
image values.

• C  (i,j) indicates how many times value i co-occurs with
value j in a particular spatial relationship d.

• The spatial relationship is specified by a vector d = (dr,dc).

d
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From Cd we can compute Nd, the normalized co-occurrence matrix,
where each value is divided by the sum of all the values.

Co-occurrence Example
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Co-occurrence Features

sums.

What do these measure?

Energy measures uniformity of the normalized matrix. 14



But how do you choose d?

• This is actually a critical question with all the
statistical texture methods.

• Are the “texels” tiny, medium, large, all three …?

• Not really a solved problem.

Zucker and Terzopoulos suggested using a χ2 statistical
test to select the value(s) of d that have the most structure
for a given class of images.  
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Example
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Laws’ Texture Energy Features

• Signal-processing-based algorithms use texture filters
applied to the image to create filtered images from which
texture features are computed.

• The Laws Algorithm
• Filter the input image using texture filters.
• Compute texture energy by summing the absolute

value of filtering results in local neighborhoods 
around each pixel.

• Combine features to achieve rotational invariance.
17



Law’s texture masks (1)
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Law’s texture masks (2)
Creation of 2D Masks

E5
L5

E5L5
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9D feature vector for pixel
• Subtract mean neighborhood intensity from (center) pixel
• Apply 16  5x5 masks to get 16 filtered images Fk , k=1 to 16

• Produce 16 texture energy maps using 15x15 windows
Ek[r,c] = ∑ |Fk[i,j]|

• Replace each distinct pair with its average map:
• 9 features (9 filtered images) defined as follows:
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Laws Filters
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Laws Process
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water

tiger

fence

flag

grass

small flowers

big flowers

Is there a
neighborhood
size problem
with Laws?

Example: Using Laws Features to Cluster
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Features from sample images
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Gabor Filters

• Similar approach to Laws
• Wavelets at different frequencies and different 

orientations
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Gabor Filters
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Gabor Filters
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Segmentation with Color and Gabor-
Filter Texture (Smeulders)
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Blobworld Texture Features

• Choose the best scale instead of using 
fixed scale(s)

• Used successfully in color/texture 
segmentation in Berkeley’s Blobworld 
project
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Feature Extraction

• Algorithm: Select an appropriate scale for each pixel 
and extract features for that pixel at the selected 
scale

Pixel Features 
Polarity
Anisotropy
Texture contrast

feature
extraction

Original 
image
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Texture Scale
• Texture is a local neighborhood property.

• Texture features computed at a wrong scale can lead to confusion.

• Texture features should be computed at a scale which is appropriate 
to the local structure being described.

The white rectangles show 
some sample texture 
scales from the image.
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Scale Selection Terminology

• Gradient of the L* component (assuming that the 
image is in the L*a*b* color space)  :▼I =

• Gaussian filter : Gσ (x, y) of size σ

• Second moment matrix: Mσ (x, y)= Gσ (x, y) * (▼I)(▼I)T

Note: σ controls the size of the window around each pixel [1 2 5 10 17 26 37 50].

Ix2 IxIy

IxIy Iy2

Ix
Iy
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Computing Second Moment 
Matrix M σ
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1. First compute 3 separate images for
• Ix2

• Iy2

• IxIy

2. Then apply a Gaussian filter to each of
these images.

3. Then M σ(i,j) is computed from Ix2(i,j),
Iy2(i,j), and IxIy(i,j).



Scale Selection (continued)
• Make use of polarity (a measure of the extent to which the gradient 

vectors in a certain neighborhood all point in the same direction) to 
select the scale at which Mσ is computed

Edge: polarity is close to 1 for all scales σ
Texture: polarity varies with σ
Uniform: polarity takes on arbitrary values 34



Scale Selection (continued)

• n is a unit vector perpendicular to
the dominant orientation.

• The notation [x]+ means x if x > 0 else 0

The notation [x]- means x if x < 0 else 0

• We can think of E+ and E- as measures
of how many gradient vectors in the
window are on the positive side and
how many are on the negative side 
of the dominant orientation in the
window.

n=[1 1]

x = [1 .6]

x’ = [-1 -.6]

Example:

polarity pσ
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Scale Selection (continued)

• Texture scale selection is based on the derivative of the polarity 
with respect to scale σ.

• Algorithm:

kσkσ

1. Compute polarity at every pixel in the image for σk = k/2, 
(k =  0,1…7).

2. Convolve each polarity image with a Gaussian with standard
deviation 2k to obtain a smoothed polarity image.

3. For each pixel, the selected scale is the first value of σ
for which the difference between values of polarity at 
successive scales is less than 2 percent.
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Texture Features Extraction

• Extract the texture features at the selected scale
– Polarity (polarity at the selected scale) : p = pσ*

– Anisotropy : a = 1 – λ2 / λ1

λ1 and λ2 denote the eigenvalues of Mσ

λ2  / λ1 measures the degree of orientation: when λ1 is large
compared to λ2 the local neighborhood possesses a dominant 
orientation.  When they are close, no dominant orientation.
When they are small, the local neighborhood is constant.

– Local Contrast: C = 2(λ1+λ2)3/2

A pixel is considered homogeneous if λ1+λ2 < a local threshold
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Blobworld Segmentation Using 
Color and Texture
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Application to Protein Crystal Images

Original image in PGM (Portable Gray Map ) 
format

• K-mean clustering result (number of 
clusters is equal to 10 and similarity 
measure is Euclidean distance)

• Different colors represent different 
textures
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Application to Protein Crystal Images

• K-mean clustering result (number of 
clusters is equal to 10 and similarity 
measure is Euclidean distance)

• Different colors represent different textures

Original image in PGM (Portable Gray Map ) 
format
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