
Region Segmentation 
Readings: Chapter 10: 10.1 

Additional Materials Provided 

• K-means Clustering (text) 
• EM Clustering (paper) 
• Graph Partitioning (text) 
• Mean-Shift Clustering (paper) 
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Image Segmentation 

Image segmentation is the operation of partitioning an 
image into a collection of connected sets of pixels. 

1. into regions, which usually cover the image 
 
2. into linear structures, such as  
    - line segments 
    - curve segments 
 
3.  into 2D shapes, such as 
     - circles 
     - ellipses 
     - ribbons (long, symmetric regions) 
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Example: Regions 

3 



Main Methods of Region 
Segmentation 

1.  Region Growing 
 
2.  Split and Merge 

 
3.  Clustering  
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Clustering 

• There are K clusters C1,…, CK with means m1,…, mK. 
 

• The least-squares error is defined as 
 
 
 

• Out of all possible partitions into K clusters,  
  choose the one that minimizes D. 

Why don’t we just do this? 
If we could, would we get meaningful objects? 

D = ∑    ∑  || xi - mk ||   . 
k=1 xi ∈ Ck 

K 2 
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K-Means Clustering 

Form K-means clusters from a set of n-dimensional vectors 
 
1. Set ic (iteration count) to 1 
 
2. Choose randomly a set of K means m1(1), …, mK(1). 
 
3. For each vector xi compute D(xi , mk(ic)), k=1,…K 
    and assign xi to the cluster Cj with nearest mean. 
 
4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic). 
 
5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k. 
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K-Means Example 1 
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K-Means Example 2 
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K-Means Example 3 
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K-means Variants 

• Different ways to initialize the means 
• Different stopping criteria 
• Dynamic methods for determining the right 

number of clusters (K) for a given image 
 

• The EM Algorithm: a probabilistic 
formulation of K-means  
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K-Means  

• Boot Step: 
– Initialize K clusters: C1, …, CK 
 Each cluster is represented by its mean mj 

• Iteration Step: 
– Estimate the cluster for each data point 

 
– Re-estimate the cluster parameters 

 
 

xi C(xi) 
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K-Means Example 
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K-Means Example 

Where do the red points belong? 
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K-means vs. EM 
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                                K-means                 EM 
 
Cluster                 mean                          mean, variance,                 
Representation                                       and weight 
 
Cluster                 randomly select          initialize K                  
Initialization          K means                     Gaussian 
                                                                distributions 
 
Expectation          assign each point       soft-assign each point 
                             to closest mean          to each distribution 
                                                                     
Maximization        compute means          compute new params 
                             of current clusters       of each distribution 
 
 



Notation 
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N(µ , σ) is a 1D normal (Gaussian) distribution with 
              mean µ and standard deviation σ (so the 
              variance is σ2.  
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N(µ, ∑) is a multivariate Gaussian distribution with 
             mean µ and covariance matrix ∑. 

What is a covariance matrix? 

       R      G      B 
R    σR

2    σRG   σRB      
G    σGR  σG

2   σGB 
B    σBR   σBG   σB

2 

variance(X):  σX
2  = ∑ (xi - µ)2 (1/N) 

 
 

cov(X,Y) = ∑ (xi - µx)(yi - µy) (1/N)  
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1. Suppose we have a set of clusters: C1, C2, ... , CK 
over a set of data points X = {x1, x2, ... , xN}. 
 
 P(Cj) is the probability or weight of cluster Cj. 
 
 P(Cj | xi) is the probability of cluster Cj given point xi. 
 
 P(xi | Cj) is the probability of point xi belonging to  
 cluster Cj. 
 
2. Suppose that a cluster Cj is represented by a 
Gaussian distribution N(µj,σj). Then for any point xi: 
 
 
 



EM: Expectation-Maximization 

• Boot Step: 
– Initialize K clusters: C1, …, CK 
  

• Iteration Step: 
– Estimate the cluster of each data point 

 
– Re-estimate the cluster parameters 

 
 

(µj, Σj) and P(Cj) for each cluster j.   

)|( ij xCp

)(),,( jjj CpΣµ For each cluster j 

Expectation 

Maximization 
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1-D EM with Gaussian Distributions 

• Each cluster Cj is represented by a 
Gaussian distribution N(µj , σj). 

• Initialization: For each cluster Cj initialize 
its mean µj , variance σj

2, and weight αj.  

N(µ1 , σ1) 
α1 = P(C1) 

N(µ2 , σ2) 
α2 = P(C2) 

N(µ3 , σ3) 
α3 = P(C3) 
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Expectation 

• For each point xi and  each cluster Cj  
compute P(Cj | xi). 
 

• P(Cj | xi) = P(xi | Cj) P(Cj ) / P(xi) 
 

• P(xi) = Σ P(xi | Cj) P(Cj) 
 

• Where do we get P(xi | Cj)  and P(Cj)? 

j 
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1.Use the pdf for a normal distribution: 
 
 
 
 
 
 
 

2.  Use αj = P(Cj) from the current 
     parameters of cluster Cj. 
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Maximization 

• Having computed 
P(Cj | xi) for each 
point xi and each 
cluster Cj, use them 
to compute new 
mean, variance, and 
weight for each 
cluster. 
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σj
2= 



x1={r1, g1, b1} 

x2={r2, g2, b2} 

… 

xi={ri, gi, bi} 

… 

Cluster Parameters 
(µ1,Σ1), p(C1) for C1 
(µ2,Σ2), p(C2) for C2 

 
… 

(µk,Σk), p(Ck) for Ck 

Multi-Dimensional Expectation Step 
for Color Image Segmentation 

Input (Known) Input (Estimation) Output 

+ 

Classification Results 
p(C1|x1) 
p(Cj|x2) 

… 
p(Cj|xi) 

… 
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x1={r1, g1, b1} 

x2={r2, g2, b2} 

… 

xi={ri, gi, bi} 

… 

Cluster Parameters 
(µ1,Σ1), p(C1) for C1 
(µ2,Σ2), p(C2) for C2 

 
… 

(µk,Σk), p(Ck) for Ck 

Multi-dimensional Maximization Step 
for Color Image Segmentation 
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Full EM Algorithm 
Multi-Dimensional 

• Boot Step: 
– Initialize K clusters: C1, …, CK 
  
 
 

• Iteration Step: 
– Expectation Step 

 
 

– Maximization Step 

 
 

(µj, Σj) and P(Cj) for each cluster j.   
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Visualizing EM Clusters 
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mean 

ellipses show one, 
two, and three 
standard deviations 

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm 
 

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm


EM Applications 

• Blobworld: Image segmentation using 
Expectation-Maximization and its application 
to image querying 
 

• Yi’s Generative/Discriminative Learning of 
object classes in color images 
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Blobworld: Sample Results 
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Jianbo Shi’s Graph-Partitioning 

• An image is represented by a graph whose nodes 
  are pixels or small groups of pixels. 
 
• The goal is to partition the vertices into disjoint sets so 
   that the similarity within each set is high and 
   across different sets is low. 
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Minimal Cuts 

• Let G = (V,E) be a graph. Each edge (u,v) has a weight w(u,v) 
  that represents the similarity between u and v. 
 
• Graph G can be broken into 2 disjoint graphs with node sets 
  A and B by removing edges that connect these sets. 
 
• Let cut(A,B) = ∑     w(u,v). 
 

• One way to segment G is to find the minimal cut. 
uεA, vεB 
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Cut(A,B) 

cut(A,B) = ∑     w(u,v) 
 uεA, vεB 

A 
B 

w1 

w2 
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Normalized Cut 

Minimal cut favors cutting off small node groups, 
so Shi proposed the normalized cut. 

                       cut(A, B)         cut(A,B) 
Ncut(A,B) =  -------------  +  ------------- 
                       asso(A,V)       asso(B,V) 

asso(A,V) = ∑ w(u,t) 
                 u∈A, t∈V 

How much is A connected 
to the graph as a whole. 

normalized 
cut 
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Example Normalized Cut 

2 

2 2 

2 2 

4 1 3 

2 

2 2 

3 

2 
2 

2 

1 

                          3             3 
Ncut(A,B) =  -------  +  ------ 
                         21           16 

A B 
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Shi turned graph cuts into an 
eigenvector/eigenvalue problem. 

• Set up a weighted graph G=(V,E) 
– V is the set of (N) pixels 

 
– E is a set of weighted edges (weight wij gives the 

similarity between nodes i and j) 
 

– Length N vector d: di  is the sum of the weights from 
node i to all other nodes  
 

– N x N matrix D: D is a diagonal matrix with d on its 
diagonal 
 

– N x N symmetric matrix W: Wij = wij 
34 



• Let x be a characteristic vector of a set A of nodes  
–  xi = 1 if node i is in a set A 
–  xi = -1 otherwise 

• Let y be a continuous approximation to x 
 
 
• Solve the system of equations 

   (D – W) y = λ D y 
for the eigenvectors y and eigenvalues λ 

• Use the eigenvector y with second smallest 
eigenvalue to bipartition the graph (y => x => A) 

• If further subdivision is merited, repeat recursively 
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How Shi used the procedure 

Shi defined the edge weights w(i,j) by 
 
w(i,j) = e                    *   e                        if ||X(i)-X(j)||2  < r 

0                       otherwise 
-||F(i)-F(j)||2 / σI 

-||X(i)-X(j)||2 / σX 

where X(i) is the spatial location of node i 
           F(i) is the feature vector for node I 
           which can be intensity, color, texture, motion… 

The formula is set up so that w(i,j) is 0 for nodes that 
are too far apart. 
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Examples of  
Shi Clustering 

See Shi’s Web Page 
http://www.cis.upenn.edu/~jshi/ 
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http://www.cis.upenn.edu/~jshi


Problems with EM 
• Local minima 
• Need to know number of segments 
• Need to choose generative model 

Problems with Graph Cuts 

• Need to know when to stop 
• Can be slow. 
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Mean-Shift Clustering 

• Simple, like K-means 
• But you don’t have to select K 
• Statistical method 
• Guaranteed to converge to a fixed number 

of clusters. 
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Finding Modes in a Histogram 

• How Many Modes Are There? 
– Easy to see, hard to compute 

 
40 



Mean Shift [Comaniciu & Meer] 

• Iterative Mode Search 
1. Initialize random seed, and window W 
2. Calculate center of gravity (the “mean”) of W: 
3. Translate the search window to the mean 
4. Repeat Step 2 until convergence 
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Numeric Example 
Must Use Normalized Histogram! 
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10   11    12   13   14  

  

x 
H(x)     5     4      3     2     1 
N(x)    5/15 4/15  3/15 2/15 1/15 

∑x N(x) = 10(5/15)+11(4/15)+12(3/15)+13(2/15)+14(1/15) 
             =  11.33 

mean shift 

window W centered at 12 



Mean Shift Approach 
 

– Initialize a window around each point 
– See where it shifts—this determines which segment 

it’s in 
– Multiple points will shift to the same segment 

 

43 

http://www.caip.rutgers.edu/~comanici/clusterDemo.html


Segmentation Algorithm 
 

• First run the mean shift procedure for each 
data point x and store its convergence point z. 
 

• Link together all the z’s that are closer than .5 
from each other to form clusters 
 

• Assign each point to its cluster 
 

• Eliminate small regions 
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Mean-shift for image segmentation 
 • Useful to take into account spatial information 

– instead of (R, G, B), run in (R, G, B, x, y) space 
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