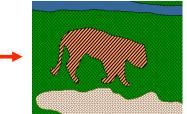
### Announcements

Photo shoot at the end of class today! Sign up for Project 3 demo session

## From images to objects



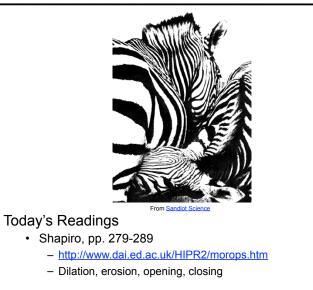


1

What Defines an Object?

- · Subjective problem, but has been well-studied
- Gestalt Laws seek to formalize this
  - proximity, similarity, continuation, closure, common fate

### Image Segmentation



## Image Segmentation

We will consider different methods

Already covered:

• Intelligent Scissors (contour-based, manual)

Today—automatic methods:

- K-means clustering (color-based)
- Normalized Cuts (region-based)

### Image histograms

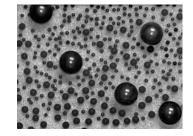


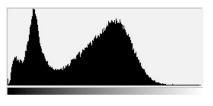
How many "orange" pixels are in this image?

- This type of question answered by looking at the histogram
- A histogram counts the number of occurrences of each color
  - Given an image  $F[x,y] \rightarrow RGB$
  - The histogram is  $H_F[c] = |\{(x,y) \mid F[x,y] = c\}|$ 
    - » i.e., for each color value c (x-axis), plot # of pixels with that color (y-axis)
  - What is the dimension of the histogram of an NxN RGB image?

# What do histograms look like?

Photoshop demo



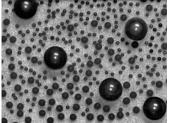


How Many Modes Are There? • Easy to see, hard to compute

# Histogram-based segmentation

#### Goal

- · Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
  - photoshop demo

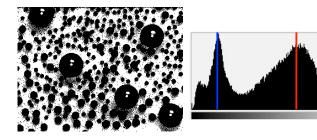




# Histogram-based segmentation

#### Goal

- · Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
  - photoshop demo

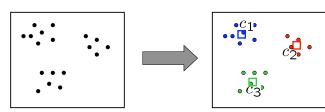


Here's what it looks like if we use two colors

### Clustering

How to choose the representative colors?

This is a clustering problem!



#### Objective

 Each point should be as close as possible to a cluster center - Minimize sum squared distance of each point to closest center

clusters i

 $\sum_{\text{points p in cluster }i} \|p-c_i\|^2$ 

# K-means clustering

#### K-means clustering algorithm

- 1. Randomly initialize the cluster centers, c<sub>1</sub>, ..., c<sub>k</sub>
- 2. Given cluster centers, determine points in each cluster
  - For each point p, find the closest c<sub>i</sub>. Put p into cluster i
- 3. Given points in each cluster, solve for c<sub>i</sub>
  - Set c<sub>i</sub> to be the mean of points in cluster i
- 4. If c<sub>i</sub> have changed, repeat Step 2

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.htm

#### Properties

- Will always converge to some solution
- Can be a "local minimum"

Σ

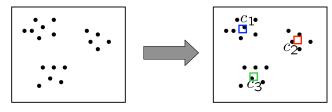
does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

## Break it down into subproblems

#### Suppose I tell you the cluster centers c<sub>i</sub>

- Q: how to determine which points to associate with each c<sub>i</sub>?
- A: for each point p, choose closest c,



Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c<sub>i</sub> to be the mean of all points in the cluster

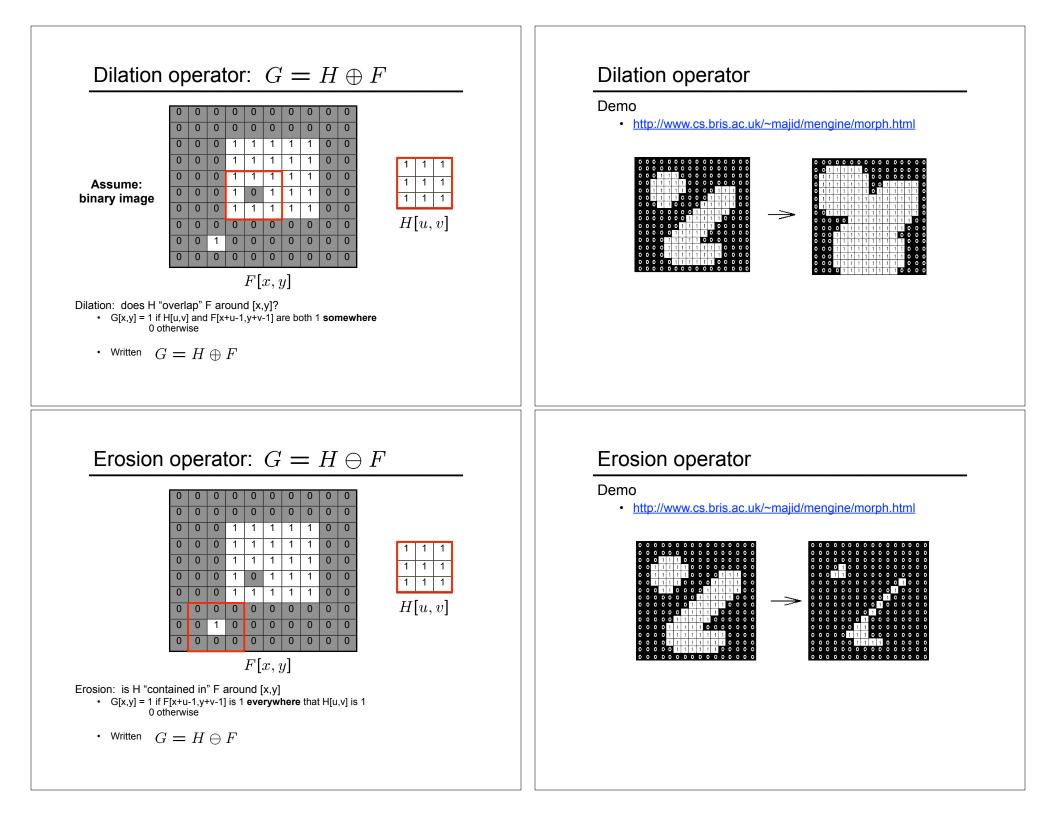
# Cleaning up the result

#### Problem:

- Histogram-based segmentation can produce messy regions
  - segments do not have to be connected
  - may contain holes

How can these be fixed?

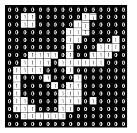




### Nested dilations and erosions

#### What does this operation do?

$$G = H \ominus (H \oplus F)$$



this is called a closing operation

### Nested dilations and erosions

What does this operation do?

 $G = H \oplus (H \ominus F)$ 

- this is called an **opening** operation
- http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions

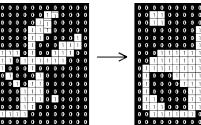
Dilations, erosions, opening, and closing operations are known as morphological operations

• see http://www.dai.ed.ac.uk/HIPR2/morops.htm

### Nested dilations and erosions

What does this operation do?

 $G = H \ominus (H \oplus F)$ 



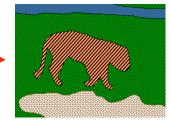


this is called a closing operation

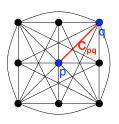
Is this the same thing as the following?  $G = H \oplus (H \ominus F)$ 

# Automating Intelligent Scissors?





### Images as graphs

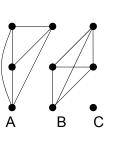




#### Fully-connected graph

- · node for every pixel
- link between every pair of pixels, p,q
- cost c<sub>pq</sub> for each link
  - c<sub>pq</sub> measures similarity
    - » similarity is inversely proportional to difference in color and position
    - » this is different than the costs for intelligent scissors

# Segmentation by Graph Cuts

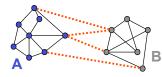




#### Break Graph into Segments

- · Delete links that cross between segments
- · Easiest to break links that have low cost (low similarity)
  - similar pixels should be in the same segments
  - dissimilar pixels should be in different segments

# Cuts in a graph



Link Cut

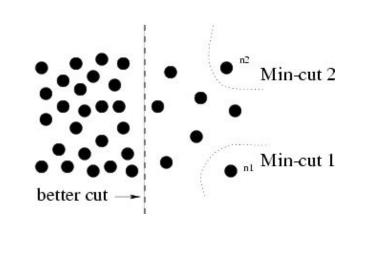
- · set of links whose removal makes a graph disconnected
- cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

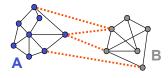
Find minimum cut

- gives you a segmentation
- · fast algorithms exist for doing this

# But min cut is not always the best cut...



## Cuts in a graph



Normalized Cut

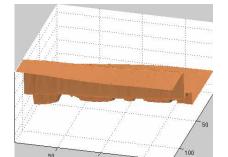
- a cut penalizes large segments
- fix by normalizing for size of segments

 $Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$ 

• volume(A) = sum of costs of all edges that touch A

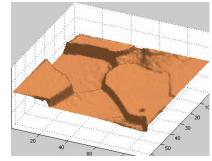
## Interpretation as a Dynamical System





# Interpretation as a Dynamical System





Treat the links as springs and shake the system

- elasticity proportional to cost
- vibration "modes" correspond to segments
  - can compute these by solving an eigenvector problem
  - for more details, see
    - » J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997

## **Color Image Segmentation**

