Automated Tactile Graphics Translation: In the Field

Chandrika Jayant, Matt Renzelmann, Dana Wen,
Satria Krisnandi, Richard Ladner, Dan Comden
University of Washington
Box 352350
Seattle, WA 98195-2350 USA

_ +1 206 616 1630
cjayant@cs.washington.edu

ABSTRACT

We address the practical problem of automating the process
of translating figures from mathematics, science, and en-
gineering textbooks to a tactile form suitable for blind stu-
dents. The Tactile Graphics Assistant (TGA) and accompa-
nying workflow is described. Components of the TGA that
identify text and replace it with Braille use machine learning,
computational geometry, and optimization algorithms. We
followed through with the ideas in our 2005 paper by creat-
ing a more detailed workflow, translating actual images, and
analyzing the translation time. Our experience in translat-
ing more than 2,300 figures from 4 textbooks demonstrates
that figures can be translated in ten minutes or less of human
time on average. We describe our experience with training
tactile graphics specialists to use the new TGA technology.

Categories and Subject Descriptors

K.4.2 [Social Issues|: Assistive technologies for persons
with disabilities

General Terms

Human Factors

Keywords

Tactile graphics, Braille, user study, image processing, ma-
chine learning, disability, accessibility

1. INTRODUCTION

A major impediment to the success of blind students in
Science, Technology, Engineering, and Mathematics (STEM)
fields is access to figures in textbooks. Often the figures in
these books are not available in any accessible format. In
some cases, important figures will be described orally by the
teacher. In other cases, tactile graphics are made of select
images from a book whose text is already being translated

Permission to make digital or hard copies of all or part of this work for

into Braille, but this is a more expensive option. Tradition-
ally, tactile graphics are thermoform (raised, heated plastic),
or swell paper (special paper the expands on darkly written
material when heated), or made with crafts tools like string,
textured materials, and glue. In the past few years printers,
such as the Tiger Embosser, have been developed to print
tactile graphics from digital images. The Tactile Graphics
Project at the University of Washington has developed tech-
niques to automate the translation of images from math and
science books to an embossed tactile format.

There are 37 million blind people worldwide, and 1.4 mil-
lion of those people are children below the age of 15 (World
Health Organization 2004 [1]). It is estimated that in 1998
approximately 93,600 visually impaired or blind students
were being served in special education programs in the United
States. Most of these blind students would benefit from im-
proved access to figures in textbooks.

In our previous paper [15], we described current work
practices in the tactile graphics field. We described the Tac-
tile Graphics Assistant (TGA) that helps automate the pro-
cess of translating figures to a tactile form. At that time the
TGA was implemented and tested in the lab but not in the
field. In the past two years, we have translated thousands of
figures from 4 books, created a detailed and comprehensive
workflow, and trained tactile graphics specialists how to use
the TGA and accompanying workflow. The workflow takes
advantage of the batch processing capabilities of modern
image processing, drawing software, optical character recog-
nition (OCR), automated Braille translation, and the TGA
to accelerate the process of translating all the figures in a
given textbook in several weeks rather than months of per-
son power. In addition, we have added new TGA features
including automated label placement and text recognition
using machine learning techniques.

In the current paper we describe work that has occurred
in the past two years. After reviewing related work in Sec-
tion 2, we describe the new and refined Tactile Graphics
workflow in Section 3. In Section 4 we describe the new fea-
tures of the Tactile Graphics Assistant (TGA) including the
use of machine learning and optimization to improve label
placement. In Section 5 we describe other issues that have
come up with the new workflow, such as dealing with math

personal or classroom use is granted without fee provided that copies are recognition and translation, visual to tactual simplification
not made or distributed for profit or commercial advantage and that copies 5,4 alteration, and angled text in images. In Section 6 we

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ASSETS’'070ctober 15-17, 2007, Tempe, Arizona, USA..
Copyright 2007 ACM 978-1-59593-573-1/07/0010 ...$5.00.

describe our experience with the textbooks we have trans-
lated. In Section 7 we describe our first training workshop
with practitioners. We conclude in Section 8.

<NumLabels>18</NumLabels> location
<Resolution=100.000000=/Resclution= file
=ScaleX>1.923077</ScaleX>
<ScaleY>1 853125</Scale¥>
<Label>

“x1=121<ix1=

=yl =45<fyl>

=x2>140=/x2>

<y2=G8<ly2=>

<Alignment=0=/Alignment= TTIa UTTD TS 1T OO0 TIaasr Lt

<Angle>3.141593</Angle> o o '
/7 </Label> i

.. w text extract

1 R i,
y = \?\ —
1] £} {18, 8)

115,09

preprocess

Y LA $. 4F
20410 200 204 1020
=15 A

{15, 5

(15,9 pure graphic

o 5w & an ~ CEREEES v
{0,20)
original clean x=18
scanned image X
image .
text
image

Figure 1: Overview of our Tactile Graphics Production

2. RELATED WORK

Most work on the automation of tactile graphics has been

concerned primarily with image processing, especially with

i Cloaned Images S forms of edge (.ietectiog and image segmentation ([.11, 5, 19]).

Image Processing == 3 batches This field, while very important, does not deal with the re-
Application = N lationship between the text and graphics within an image.

Scanned Images

Training

atadma —— In our work, we are automating image processing combined
with text extraction. As far as we know, there has not been
much work done on OCR for images combined with text.
We will discuss the reason that regular OCR cannot work
Location file for our text extraction, in Section 3.4.

Scal fact : T . .
Image wio text cale factors In [14], work is done on automating information extraction
—— =Y— fact .. .
Image Processing J s from vector graphics images. However, many images are not
pplication
[E—— mage yet in this format, and getting digital files from the publish-

simplification ers is no easy task. Also, there will always be older books

to translate, which must be scanned. Some work has been
done on examining the workflow of the translation of images
to a tactile format, including the G2T Graphics to Tactile
Project, which uses a semiautomatic image processing tool
in conjunction with existing drawing tools [5]. This system
also does not deal with text in images. Automatically pro-
duced tactile maps are made using geographical information
systems and MATLAB along with available embossing and
engraving technologies in [16], an excellent example of au-
tomation being used in the tactile graphics field, but only in

Simplified image

5 creation and not translation.

Image/Text r‘\‘ - ‘_". Image w Braille

Application | Braille I
! Placement | |
| | <o 3. TACTILE GRAPHICS WORKFLOW
3 | m Figure 1 gives an overview of the tactile graphics process
| | that we have developed, while Figure 2 provides a detailed
7777777777 view of the workflow. In the overview, the original image is

Embossed Images

scanned, then preprocessed to clean it up. The TGA then
finds and removes the text, creating three objects: the image
without text, the text as an image, and the location file, an
XML file, that describes the original locations of the text
found in the image. The text image is then processed with
OCR and Braille translation. The final step is to merge the

Figure 2: Workflow as of May 2007

76

Figure 3: Noise introduced by scanning.

text without an image, the location file, and the Braille into
a new document suitable for embossing.

The detailed view of the workflow (Figure 2) has a box for
each software package that is used and emphasizes the batch
processing to achieve high throughput. Image processing
software, with batch processing capability, can process all
the scanned images at once. Our TGA, with proper training,
can find and remove all the text from images as a batch
process. Notice that each box has an editing sub-box where
someone has to check and possibly correct the results from
the batch processing. These editing steps are where almost
all the human time is spent during the workflow.

One question that we are always asked is why we cannot
use modern OCR software to find and remove all the text
in images. This simple answer is that current OCR software
is not up to the task [17]. OCR software may recognize a
lot of the text in the image, but it also recognizes many
parts of the graphics as text when it is not (false positives).
The user must parse through the OCR results to get the
correct results out of it, and then must know where to place
that text back into the image. This takes an extraordinary
amount of time to edit! By employing machine learning,
the TGA exploits the consistent text style found in figures
in textbooks to accurately find text in images. We found
that OCR software does a fine job on the text alone once it
is removed from the figure.

In the subsections below we describe in more detail the
parts of the detailed workflow. The software we use in our
workflow was chosen because of their processing abilities,
scripting abilities, and reputation.

3.1 Preprocessing

The first step of the workflow is to obtain and preprocess
the image files. Most often these images are not available
from the publisher in a digital format, but must be scanned.
Scanning introduces noise into the images, even at a high
resolution (see Figure 3). Noise is a problem for the TGA
because the text finding algorithm uses color as a feature
in identifying connected components that may be individual
characters. Figure 3 illustrates the problem. Even though
the “0” on the left side of Figure 3 looks mostly black, it
is actually a vast array of colors that make the “0” a large
number of connected components rather than one of a single
color. Imaging processing software, such as Adobe Photo-
shop, has the ability to apply a threshold to change multiple
colors into one color. This can be achieved for an entire set
of images by using a Photoshop script.

3.2 Image Classification

The detailed workflow, Figure 2 does not show this step,
but images in textbooks often fall into a number of classes,
such as line graphs, diagrams, and bar charts, that can be
processed as separate groups.

7

Different image classes might require different treatment
in terms of preprocessing, training for the TGA, and other
special processing that may be needed. After the image files
are all obtained from a book, we put them in a few different
classes manually, so that all figures in the same class are
handled as a batch. An example of a class might be a set
of bar charts where the colors in the bars of the the charts
are transformed into textures suitable for a blind person.
Another example of a class might be a set of figures that use
a lot of math that require special processing in the Braille
translation step.

3.3 Tactile Graphics Assistant

The next step of the workflow is to automatically extract
text from the image using the TGA software. First, the
user must manually train on a few representative images so
the software can learn what are characters and what are
not. Often the training set is only a few images, with the
batch being many times larger. For example, in one of our
textbooks there was a batch of 600 figures. We trained on
fewer than 5 images, taking just a few minutes. Almost all
the characters in the remaining figures in the batch were
found automatically. A relatively small amount of time was
needed to find those characters not identified by the TGA.
Details of the TGA are covered in Section 4.

The TGA creates three output files for each image pro-
cessed (see Figure 1). The original image with the text re-
moved is saved as a bitmap, the extracted text labels are
saved as another bitmap, and an XML file, called the loca-
tion file, is saved with the locations of all the text labels in
the original image (so that the Braille will be placed back in
the right place in the final step of the workflow).

3.4 OCR and Braille Translation

In the OCR step, the text image produced by the TGA is
processed to actually identify the text image as text. Notice
in Figure 1 that one of the equations in the figure is at an
angle. The TGA rotates this text automatically so that the
OCR software can identify it. Standard OCR engines, such
as Omnipage or FineReader, are, for the most part, capable
of identifying text from text images provided as a batch. An
exception is math where the math OCR InftyReader [18]
can be used for better results. If InftyReader is not used,
the user must make sure to add appropriate math tags to
convert the recognized text into the LaTex format, before
sending it to the Braille translator for final conversion into
Nemeth Braille. Math issues are discussed more in Section 5.
Again, the user must manually make corrections to validate
the OCR results. Once the OCR results are edited, the files
must be saved as text files for later translation to Braille.
An annoying detail that happens in this step is to check that
the number of lines of OCR text matches the number of lines
of text identified by the TGA and stored in the location file.
This can be verified in a batch way using a Perl script.

After the text files are generated, they must be translated
to Braille using a Braille translator, such as Duxbury or
Braille2000. Again, the files can be translated in batch, but
must be verified manually by a Braille specialist, and saved
as text files. The same Perl script can be used to make sure
the number of lines of the Braille still matches the number
of lines stored in the location file.

3.5 Resizing and Image Simplification

The original image files that have the text extracted must
be resized, usually to 10 x 10 inches, which fits nicely on a
standard 11 x 11 inch Braille page. The batch script that
does this also modifies the location file to take into account
the larger size. The TGA records the scaling factors in the
location file so that later placement of the Braille is done
to scale. There is also an option in our TGA software to
preserve the aspect ratio of the original image, and still fit
it onto the 10 x 10 inch page.

These image files might need to be simplified or changed
for better tactile perception. For example, lines might need
to be thickened, interfering lines removed, legends resized,
and colors changed to textures. These changes can be done
in image processing software, such as Adobe Photoshop, ei-
ther manually or with scripts. We discuss this in more detail
in Section 5.

3.6 Final Output and Printing

The final step is to take the XML location files, the Braille
text files, and the resized (and sometimes simplified) image
files that have the text extracted, and combine them into
the final product (see Figure 1). This is done with an Adobe
Illustrator script as a batch. Manual editing must be done to
adjust the location of the Braille labels in the final image.
Label placement will be discussed more in later sections.
Another part of the step is to add information, such as figure
number and page number in the original textbook, into the
image. This can also be done as a batch using a script.
Once this step is completed each original figure is stored as
an Illustrator file ready for printing.

For printing we use the Tiger Embosser from ViewPlus.
This embosser can print on the standard 11 x 11 inch paper,
and can also print larger sizes up to 16 inches wide and
up to 50 inches long. The printouts have 20 dots per inch
resolution. Any embosser that can print Ilustrator files can
be used.

4. TACTILE GRAPHICS ASSISTANT

The TGA software has undergone some major improve-
ments in the past two years, including an implementation of
better character recognition after training, consistent justifi-
cation of Braille labels in the final image, and better Braille
label placement.

4.1 Character Training

It was useful to apply a formal machine learning technique
to improve character recognition accuracy further and sim-
plify the user’s task by eliminating the need to fine tune
parameters to the character-finding algorithm in the origi-
nal TGA [17]. Since the support vector machine (SVM) is
well suited to classification problems, it is a natural tech-
nique to apply [3]. Support vector machines are a set of
related supervised learning methods used for classification
and regression. The TGA uses the svmLight package [12].

It is important to note that in this part of the process, we
are finding what parts of the original image are characters-
not recognizing what each particular character is. That is
up to the OCR system later in the workflow. Characters are
typically connected components of one color (or set of similar
colors) in an image (see Figure 4). In the training phase of
the TGA, the user manually selects characters in the image.

78

Figure 4: Definition of ”connected.”

2 1

Figure 5: Radial features of a connected component.

Training is both on positive and negative examples; char-
acters that are selected are positive examples, and all other
connected components are negative examples of characters.
Features used to classify characters are height, width, area,
pixel color and what we call radial density. The bounding
box of each connected component is subdivided into a num-
ber k of pie shaped pieces around by rotating a radial line
around the center of mass of the character. See Figure 5 for
an example where k = 8. The radial density consists of k
features, each of which is the percentage of pixels in each
pie piece that are part of the character. Thus, there are a
total of k + 4 features to train for. The choice of k = 5,
or 9 features, achieves excellent results for the textbooks we
translated.

Evaluation of the character-finding algorithm using the
features mentioned above is shown in [17]. Three line graph
figures from [9] were used for training, with a total database
of 475 character connected components. The algorithm was
run on 25 figures (line graphs, bar charts, and diagrams),
with a total of 16145 connected components, 6895 of which
were character connected components. There were 92 false
positives and 17 false negatives, yielding a 0.68% character
recognition error rate.

4.2 Label Finding

The custom label finding algorithm was discussed in the
2005 paper and has not changed [15]. Training is done in
the same way, with the user selecting only positive exam-
ples of text labels in this case. By definition a text label is
a segment of text that will be recognized as one line by the
OCR and subsequently translated to Braille as a single line.
The reason this label step must be done is two-fold. First of
all, the OCR expects to recognize lines of text, not individ-
ual letters. Second, Braille translators expect lines of text,
not individual letters because Braille has contractions, that
contract sequences of letters or words into smaller number of
Braille characters. That is, Braille, or more properly Grade
2 Braille, is compressed for faster reading.

Labels are manually chosen on the training set by the user,
and using a minimum spanning tree algorithm connecting
the centroids of all characters in the image, the software
determines the labels in the rest of the batch. The custom

algorithm uses characteristics of labels such as the angle of
the line of best fit, the mean squared error of the line of best
fit, and the spacing between the adjacent characters [17].

Evaluation of the label-training algorithm is also shown
in more detail in [17], using the same 3 figures as in the
evaluation for character-finding. These training figures con-
tained 126 character labels. The algorithm was then run
on the same 25 figures (line graphs, bar charts, and dia-
grams). There were 824 character labels in these figures that
resulted. There were 8 mis-grouped connected components,
4 false positives, and 1 false negative.

4.3 Text Rotation

The character and label finding algorithms work well with
angled text as illustrated in Figure 6(b). Unfortunately,
OCR does not work well with angled text so it must be
rotated to be horizontal as in Figure 6(c). The angle of the
text can be approximated by computing the perpendicular
least square fit of the character pixels in the label, that is,
the affine line which minimizes the perpendicular squared
distance from the line to the pixels [10]. Once this line is
found, the angle of rotation can be computed. One difficulty
arises when the text is vertical; there may be ambiguity as
to whether the text should be rotated left or right to be hor-
izontal. Occasionally, the wrong decision is made, and the
text ends up upside down in the image text file.

An example of an image where this capability is needed is
shown in Figure 6 (image from [2]).

4.4 Alignment and Justification

Because the Braille labels are typically a different size and
aspect ratio than the original labels there is question about
where they should be placed in the output image. A Braille
label could be left justified, right justified, or centered rela-
tive to the original label. For example, labels on the y-axis
of a graph should likely be right justified, while the labels on
a legend should be left justified. To determine the justifica-
tion a variant of the well known plane-sweep algorithm from
computational geometry is used [4]. We have not changed
this since our 2005 paper.

45 Automated Label Placement

Braille labels will be of different size than the original
text labels because Braille characters have a fixed height
and width, and because of Braille contractions. In addition,
Braille must be horizontal even though the original label
may be at an angle. Calculating the exact length of a Braille
label is impossible without knowing the results of the OCR
and Braille translation. Although we are able to calculate,
with a high degree of accuracy, the justification for a label,
there is still the problem of making sure that Braille labels
do not overlap the pixels of the image and each other.

In order to improve the label placement we have devel-
oped a new algorithm to place labels better. In part, the
motivation for developing this new algorithm is the data
we collected in three translated textbooks ([2, 8, 9]) using
only the justification algorithms for placement (see Figure
7). We noted that almost a fourth of the time is spent in
adjusting the labels in the final step before printing. Given
that this was a major bottleneck, we focused our attention
on improving label placement.

The new label placement algorithm calculates a locally
optimal location for each Braille label. Angled labels are

79

o

£
N
0('0‘2
5
o
\(\Co‘e

(a) Original Image.

(b) Image with with TGA labels.

Crust
Mantle
cone
Outer
core

Inner

fsthenosphere

Lithosphere

(c) Image of text rotated by
TGA.

Figure 6: Handling of Angled Text.

28%

20%

14.4% \

13.7%

15%

10%

% of Total Minutes

53%

5%

0%

_/
N * o
N 56 & ;& 3¢ 5 S
ef o <& o P & & &
gje \Qj- bqa 2 Q® o
S ¢ N O.,.xO
kN
I &

Figure 7: Label Placement as Part of Overall Image
Translation Tasks.

rotated to become horizontal. Each label is given a score
which indicates how far it is from it original location and
how much it overlaps the image and other labels. The goal
of the algorithm is to move the label to new locations to
minimize the sum of scores for all the labels. Labels are
placed in a priority queue based on their scores, and the label
with the highest score are moved a small distance to reduce
its score. It is then reinserted into the priority queue. The
score reductions and label re-insertions are repeated until no
improvement can be made. A label’s score is calculated as
aL + bP + cD where L is the number of pixels overlapping
other labels, P is the number of pixels overlapping the image,
D is the distance in pixels from of the label from it original
position, and a, b and ¢ are tuning constants. In addition,
for each label we keep track of the number of times it has
been moved. If that number exceeds a specified constant
we set the score to zero so that it will not be moved in the
future. Labels are moved in “steps” of 5-10 pixels. A label
is moved in 8 directions to find a better position. Once final
label locations are reached, the new label locations are saved
in the location file.

We are still in the process of evaluating the new label
placement algorithm and making sure it is compatible with
the justification algorithm.

5. OTHER ISSUES

In the best of all worlds one could follow the workflow as
described above to achieve results we would like. Unfortu-
nately, there are a number of special cases that arise that
have us deviate from the workflow. Although this slowed
down the work it also made it more interesting because more
problem solving was needed. Many issues can come up, most
of which are particular image simplification or clarification
problems. Shading in the background may need to be re-
moved, grid lines taken out, parts of the image enlarged.
With more experience, more issues will come up, some of
which could be handled by image processing scripts in Pho-
toshop. Below we describe two common deviations from the
workflow that we experienced, math and legends.

80

% of 100%

Total 80%

Images gqo, ||
40%

NSl
0% T T
Statistics Trigonometry
Text Book

Discrete

O Other Images
= Probably Better with Regular OCR
@ Needs Math OCR

Figure 8: Percentage of Images with Math Text

5.1 Math

There is a large amount of math present in many text-
book images, particularly those in the STEM fields. Figure
8 shows the percentage of images with math text in 3 books
we investigated [13, 6, 7], one of which we had already fully
translated. The other 2 books were just used for the math
experiments and not fully translated. Regular OCR systems
do not perform very well on math recognition. InftyReader
[18] is a specific math-OCR system that works well on most
images of math. However, with our workflow, an added
problem arises because we are recognizing images of text
labels, rather than full pages of text out of books or pa-
pers. InftyReader always does well on math, but falls short
on recognizing regular non-math text properly with these
text images from the TGA. In a preliminary study a system
that combined the output of math OCR and regular OCR
achieved the best results. The output of InftyReader can
be either LaTex or MathML. Fortunately, InftyReader has
a WYSIWYG math editor so that errors can be corrected
without directly editing the LaTex or MathML files.

Once the math (as part of the text) is extracted with the
TGA, and the math is recognized by an OCR system, it
must be translated to Nemeth, a standard for math Braille.
Translating from LaTex and MathML to Nemeth can be
done using Duxbury or Braille2000, although both are lim-
ited in their coverage of the two math markup languages.

5.2 Legends

Apart from preprocessing images to have them usable by
the TGA, care must be put into how well the tactual repre-
sentation of a visual medium will be perceived. One problem
that came up had to do with the limits of tactual percep-
tion. The legend of a graph had a little square representing
a color of a bar graph. Even when the image was enlarged
to 10 x 10 inches, the square was too small for textures to be
distinguished. The solution was to make the legend much
larger in the first place (see the before and after in Figure
9). Patterns, that can serve as textures, can be created in
Photoshop, and colors can be easily changed into these pat-
terns using the color select and fill commands. To make the
legend larger we manually cut the legend out of the image,
made it bigger in Photoshop, and reinserted the legend into
the image. This was done before using the TGA, and it dealt

EOEmO

(a) Original Image

DEBaRO

(b) With Textures and Enlarged Legend

Figure 9: Visual to Tactual Issues (With Text and
Braille Removed For Clarity)

perfectly well with the different text sizes. This is just one
example of making sure the graphic actually makes sense to
the blind person as a final product. Enlarging the legend
was also an example of a task that had to be accomplished
one figure at a time and could not be done as a batch.

6. TRANSLATED BOOKS

We have translated images from 4 textbooks. These in-
clude Computer Architecture: A Quantitative Approach [9]
at 25 minutes per figure (a book with very complex graphs),
Advanced Mathematical Concepts, Precalculus with Appli-
cations [8] at 6.3 minutes per figure, An Introduction to
Modern Astrophysics [2] at 10.2 minutes per figure, and
Discrete Mathematical Structures [13] at 8.8 minutes per
figure. The images are available at www.tactilegraphics.
cs.washington.edu/books.html. The workflow breakdown
for 3 of these books is shown in Table 1. The computer ar-
chitecture book was a trial run, so we did not record detailed
workflow breakdown data for this book.

For all 3 books, the Illustrator part of the workflow was
one of the top 2 most time-consuming tasks. These results
were before the addition of the automated label placement
algorithm to the TGA. We hope with further investigation
and study into the label placement issue, the time spent in
this step can be greatly reduced.

The TGA step does not seem to be a major bottleneck
of the workflow at all. If good training images are chosen,
there is minimal editing to be done at this text extraction
step. Omnipage (OCR editing time) causes a large time-
sink in the case of math text in images. The discrete math
and astronomy books both had more complicated math text

81

than the precalculus book, and they took more editing time
because we used regular OCR software. This human time
could be decreased by using InftyReader for math, as is dis-
cussed in Section 5, which is why we were looking into find-
ing better ways to distinguish math and text in images.

The setup and classification steps are manual steps that
don’t easily translate to a batch form. Setup here consisted
of scanning the books, and then manually cropping out the
images from each scanned page in Photoshop. With digi-
tal images, this time is greatly reduced. Classification takes
little time and seems worth the time it saves in the TGA
step (better classes lead to better training and less editing
time). With Duxbury (Braille translation step), the only
change that we can make is using a different Braille trans-
lator, which might be more or less accurate. Either way,
the user must manually verify the results before placing the
Braille back into the images.

The workflow step consists of “thinking time.” This in-
cludes figuring out what scripts to write, and how to classify,
preprocess, and simplify images. This step varies greatly
from book to book. However, the more books a tactile
graphics specialist translates with our method, the more in-
tuitive and less time consuming these issues will be.

All of the hours listed are human hours. Some processes
might take longer to run, but the tactile graphics specialist
can work on other books or batches while waiting for the
processes to finish. These batch processes do not run for
long on a computer with the right specifications, on the scale
of seconds per image.

7. BRINGING THE PROCESS
TO THE FIELD

In April, 2007, we gave a one day training session on
the TGA and workflow at the National Braille Association
Spring Professional Development Conference in in Colorado
Springs. At our Accelerated Production of Tactile Graph-
ics Workshop we had about 60 participants in the morning
overview session and 30 participants for the hands-on after-
noon session, with 15 stations enabled with the TGA and
workflow software. We had participants that were mostly
Braille transcribers and tactile graphics specialists. We had
a very positive overall reaction to the software, and many
people expressed interest in using the software in their real
work environments. Some practical concerns came up, such
as access to the Tiger Embosser, and getting the correct file
formats of images. Since the training workshop there have
been at least 20 downloads of the TGA by practitioners.
One experienced tactile graphics specialist who was trained
on the software in July 2007 will now train others and utilize
the software as part of her job.

We will be having another workshop at the 10th An-
nual Accessing Higher Ground Conference (Accessible Me-
dia, Web and Technology Conference for Education, Busi-
nesses, and Web and Media Designers) in November 2007 in
Boulder, Colorado and get more transcriber feedback.

8. CONCLUSION

Since our previous paper [15], we have improved the TGA’s
features and refined the overall Tactile Graphics workflow.
In the TGA, we added the capabilities of automated label
placement, used machine learning to recognize text char-
acters in images, and dealt with angled text. We hope to

Discrete Math Precalculus Astronomy
Minutes Minutes Minutes
SetlUp 425| 10.30% 660 9.80% 1110] 18.30%
Classification 245 5.90% 390, 5.80% 270 4.40%
TGA 595| 14.40% 570 8.40% 585| 9.60%
Omnipage 714] 17.30% 660 9.80% 945| 15.60%
Photoshop 800| 19.40% 975 14.40% 660| 10.90%
Duxbury 225 5.50% 630 9.30% 450| 7.40%
lllustrator 770 18.70% 1335| 19.70% 1845| 30.40%
Workflow 350 8.50% 1545| 22.80% 210 3.50%
Total 4124 100.00% 6765| 100.00% 6075| 100.00%
num figs 467 num figs 1080 num figs 598
minffig 8.8 minffig 8.3 minffig 10.2

Table 1: Workflow Breakdown for 3 Books

receive continued valuable feedback on our system as more
tactile graphics specialists are trained.

A detailed workflow and extensive training manuals have
been created, which include information on software and
hardware requirements to use our system. These along with
the TGA software are available for download at http://
tactilegraphics.cs.washington.edu.

9. ACKNOWLEDGEMENTS

This research was funded by the National Science Founda-
tion Grant No. 11S-0415273, the Washington Research Foun-
dation, and the Boeing Professorship. Thanks to Adobe Sys-
tems Corporation for a software license grant and to View-
Plus Technologies Inc. for technical assistance. Thanks to
Sangyun Hahn, Zach Lattin, Stuart Olsen, Carson Smith,
and Cian Malone for feedback.

10. REFERENCES

[1] American foundation for the blind.
http://www.afb.org.

B. Carroll and D. Ostlie. An Introduction to Modern
Astrophysics. Addison-Wesley, 1996.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/"cjlin/libsvm.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge,
2001.

D. Crombie, R. Lenoir, N. McKenzie, and

G. Toannidis. The bigger picture: Automated
production tools for tactile graphics. In Proceedings of
ICCHP, pages 713-720, 2004.

J. Freund. Statistics: A First Course. Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

I. M. Gelfand and M. Saul. Trigonometry. Birkhuser,
Boston, 2001.

B. Gordon-Holliday, L. Yunker, G. Vannatta, and

F. Crosswhite. Advanced Mathematical Concepts,
Precalculus with Applications. Glencoe/McGraw-Hill,
1999.

J. Hennessy and D. Paterson. Computer Architecture,
A Quantitative Approach. 3rd Edition. Morgan
Kaufmann Publishers, San Francisco, 2003.

2]

(3]

(4]

(5]

[7]

(9]

82

[10] J. Hollmen. Principal component analysis, 1996. http:
//www.cis.hut.fi/” jhollmen/dippa/node30.html.
M. Horstmann, M. Lorenz, A. Watkowski,

G. Ioannidis, O. Herzog, A. King, D. Evans, C. Hagen,
C. Schlieder, A. Burn, N. King, H. Petrie, S. Dijkstra,
and D. Crombie. Automated interpretation and
accessible presentation of technical diagrams for blind
people, 2004.

T. Joachims. Making large-Scale SVM Learning
Practical. MIT-Press, 1999.

B. Kolman, R. Busby, and S. Ross. Discrete
Mathematical Structures. Prentice Hall, 2003.

S. Krufka and K. Barner. Automatic production of
tactile graphics from scalable vector graphics. In
Proceedings of The Seventh International ACM
SIGACCESS Conference on Computers and
Accessibility, (Baltimore, MD, Oct 09 - Oct 12, 2005),
pages 166 — 172, 2005.

R. Ladner, M. Ivory, R. Rao, S. Burgstahler,

D. Comden, S. Hahn, M. Renzelmann, S. Krisnandi,
M. Ramasamy, B. Slabosky, A. Martin, A. Lacenski,
S. Olsen, and D. Croce. Automating tactile graphics
translation. In Proceedings of The Seventh
International ACM SIGACCESS Conference on
Computers and Accessibility, (Baltimore, MD, Oct 09
- Oct 12, 2005), pages 50-57, 2005.

J. Miele. Tactile map automated production (tmap):
Using gis data to generate braille maps, 2004.

M. Renzelmann. Text segmentation and grouping for
tactile graphics, 2005.
http://www.cs.washington.edu/education/ugrad/
current/bestseniortheses/Rjenzelmann. pdf.

M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and

T. Kanahori. Infty: an integrated ocr system for
mathematical documents. In DocEng ’03: Proceedings
of the 2003 ACM symposium on Document
engineering, pages 95-104, New York, NY, USA, 2003.
ACM Press.

T. Way and K. Barner. Automatic visual to tactile
translation, part ii: Evaluation of the tactile image
creation system. In IEFE Transactions on
Rehabilitation Engineering, pages 95-105, 1997.

(11]

(12]
(13]

(14]

(15]

(16]

(17]

(18]

(19]

