Announcements

- Project 2 artifact due today
- Midterm out Tuesday (not this week)

Stereo

Readings

- Trucco \& Verri, Chapter 7
- Read through 7.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2, 7.3.7 and 7.4, 7.4.1.
- The rest is optional.

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Teesta suspension bridge-Darjeeling, India

Anaglyphs online

I used to maintain of list of sites, but too hard to keep up to date. Instead, see wikipedia page:
http://en.wikipedia.org/wiki/Anaglyph_image

A free pair of red-blue stereo glasses can be ordered from Rainbow Symphony Inc

- http://www.rainbowsymphony.com/freestuff.html

Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
- camera pose (calibration)
- point correspondence

Stereo image rectification

Stereo image rectification

- reproject image planes onto a common plane parallel to the line between optical centers pixel motion is horizontal after this transformation
two homographies (3×3 transform), one for each input image reprojection
C. Loop and Z. Zhang. Computing Rectifying Homographies for $\frac{\text { Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, }}{1999}$, Computing Rectifing Homographies for

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

- This should look familar...

Stereo Matching

Given a pixel in the left image, how to find its match?

- Assume the photos have been rectified

Window size

Effect of window size

- Smaller window
$+$
- Larger window

[^0]
Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene

Ground truth

Better methods exist...

State of the art method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/

Results with window search

Window-based matching (best window size)

Ground truth

Stereo as energy minimization

What defines a good stereo correspondence?

1. Match quality

- Want each pixel to find a good match in the other image

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount

Stereo as global optimization

Expressing this mathematically

1. Match quality

- Want each pixel to find a good match in the other image
matchCost $=\sum_{x, y}\left\|I(x, y)-J\left(x+d_{x y}, y\right)\right\|$

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount
smoothnessCost $=\sum_{\text {neighbor pixels } p, q}\left|d_{p}-d_{q}\right|$
We want to minimize sum of these two cost terms
- This is a special type of cost function known as an MRF (Markov Random Field)
- Effective and fast algorithms have been recently developed:
» Graph cuts, belief propagation...
" for more details (and code): http://vision.middlebury.edu/MRF/

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{\text { baseline } * f}{z}
$$

Middlebury Stereo Evaluation

http://vision.middlebury.edu/stereo/

Real-time stereo

 http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

- Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Stereo reconstruction pipeline

Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Active stereo with structured light

Microsoft's Kinect

http://www.youtube.com/watch?v=7QrnwoO1-8A

Project "structured" light patterns onto the object

- simplifies the correspondence problem
- can remove one of the cameras (replace with projector)

Laser scanning

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

[^0]: +

