Announcements

Midterm: out by the end of the week
Project 1 artifact winners

Problem: Drift

Solution

- add another copy of first image at the end
- this gives a constraint: $y_{n}=y_{1}$
- there are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- compute a global warp: $y^{\prime}=y+a x$
- run a big optimization problem, incorporating this constraint
» best solution, but more complicated
known as "bundle adjustment"

Global Alignment and Structure from Motion

Today's Readings

- Photo Tourism (Snavely et al., SIGGRAPH 2006)
- http://phototour.cs.washington.edu/Photo_Tourism.pdf

Global optimization

Output

We want to estimate $\boldsymbol{t}_{\mathbf{i}}$. We know $\mathbf{p}_{\mathbf{i}}$

- how do $\mathbf{t}_{\mathbf{i}}$ relate to $\mathbf{p}_{\mathbf{i}}$?

Global optimization

Recipe

1. Identify the variables you want to estimate

- in our case: $\boldsymbol{t}_{\mathbf{i}}$

2. Identify a set of objectives you want to satisfy

- in our case: $\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}}=\mathbf{t}_{\mathbf{i}}-\mathbf{t}_{\mathbf{j}}$ and similar for $\mathbf{q}, \mathbf{r}, \mathbf{s}$

3. Define an objective function F over these variables, whose minimum occurs at the "answer" for these variables
4. Find the minimum of F

Objective function

Objective function

$$
\sum_{i=2}^{3}\left\|\left(\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}-\mathbf{1}}\right)-\left(\mathbf{t}_{\mathbf{i}}-\mathbf{t}_{\mathbf{i}-\mathbf{1}}\right)\right\|^{\mathbf{2}}
$$

+ similar terms for $\mathbf{q}, \mathbf{r}, \mathbf{s}$

Objective function

Objective function $\sum_{i=2}^{3}\left\|\left(\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}-\mathbf{1}}\right)-\left(\mathbf{t}_{\mathbf{i}}-\mathbf{t}_{\mathbf{i}-\mathbf{1}}\right)\right\|^{\mathbf{2}}$

Objective Function

Adding in $\mathbf{q}, \mathbf{r}, \mathbf{s}$ give a larger matrix equation

$$
\left.\begin{array}{cccccccc}
{\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1
\end{array}\right)} & 0 \\
& & & \vdots & & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
x_{2} \\
y_{2} \\
x_{3} \\
y_{3} \\
x_{4} \\
y_{4}
\end{array}\right]=\left[\begin{array}{c}
u_{2}-u_{1} \\
v_{2}-v_{1} \\
u_{3}-u_{2} \\
v_{3}-v_{2} \\
\vdots \\
\mathbf{A}
\end{array}\right.
$$

Defines a least squares problem: minimize $\|\mathbf{A x}-\mathbf{b}\|$

- Solution: $\hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}$
- Problem: there are multiple solutions for $\hat{\mathbf{x}}!\quad\left(\operatorname{det}\left(\mathbf{A}^{T} \mathbf{A}\right)=0\right)$
- We can add a global offset to a solution $\widehat{\mathbf{x}}$ and get the same error

Ambiguity in the solution

$(-100,-100)$

- Each of these solutions has the same error
- Called the gauge ambiguity
- Solution: fix the translation of one image $\left(\mathbf{t}_{1}=(0,0)\right)$

Structure from motion

aka "bundle adjustment" (texts: Zisserman; Faugeras)

Structure from motion

\otimes
Computed 3D structure

SfM objective function

Given point \mathbf{x} and rotation and translation \mathbf{R}, \mathbf{t}

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\mathbf{R x}+\mathbf{t} \quad \begin{aligned}
& u^{\prime}=\frac{f x^{\prime}}{z^{\prime}} \\
& v^{\prime}=\frac{f y^{\prime}}{z^{\prime}}
\end{aligned} \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})
$$

Minimize sum of squared reprojection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\|\underbrace{\| \mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\begin{array}{c}
\text { predicted } \\
\text { image location }
\end{array}}-\underbrace{\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]}_{\begin{array}{c}
\text { observed } \\
\text { image location }
\end{array}}\|^{2}
$$

Solving structure from motion

Minimizing g is difficult:

- g is non-linear due to rotations, perspective division
- lots of parameters: 3 for each 3D point, 6 for each camera
- difficult to initialize
- gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)

Many techniques use non-linear least-squares optimization (bundle adjustment)

- Levenberg-Marquardt is a popular algorithm
- http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

Good code online

- Bundler: http:///phototour.cs.washington.edu/bundler/
- Multicore: http://grail.cs.washington.edu/projects/mcbal

Photo tourism video: http://www.youtube.com/watch?v=5Ji84zb2r8s
Microsoft Photosynth: http://photosynth.net/
Google Photo Tours: http://maps.google.com/phototours

flickr

Home The Tour Sign Up Explore

Search

Search Photos Groups People

 $\odot \overbrace{\text { full text }} O$ Togs ony

```
We found \(1,281,363\) results natching rome.
```


 Boon your filiohtat before Aprill 24 wweAifrance.us What to Do Rome
$55+$ Things to do in Rome on Vilator. See the Vatican,
Colosseum \& more. Colosseum \& more.
Rome with hids
Gem Extarasavigs on a Family
Vacaito to Rome Limitea Time Get Exta Savings on a amily
Vaction to Rome . Limited Time
Only. Only.
$\frac{1 y}{}$ tol titaly from $\$ 499$ Round
Travel to loaly between May 1-31

$\frac{\text { Rome ltaly Day Tours }}{\text { Private tours of Rome Avariety of }}$
flickr"
Home The Tour Sign Up Explore
rome trevi fountain

The wife and a a the Trevi fountain in 2006
Would you like to comment?

More info

- Rome-in-a-day page
- http://grail.cs.washington.edu/rome

