
• Project 2
– contact your partner to coordinate ASAP
– more work than the last project (> 1 week)
– you should have signed up for panorama kits

Announcements Projective geometry

Readings
• Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: 

Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, 
(read  23.1 - 23.5, 23.10)

– available online:  http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room

Projective geometry—what’s it good for?
Uses of projective geometry

• Drawing
• Measurements
• Mathematics for projection
• Undistorting images
• Focus of expansion
• Camera pose estimation, match move
• Object recognition

Applications of projective geometry 

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.
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Measurements on planes

Approach:  unwarp then measure
What kind of warp is this?

Homographies
Perspective projection of a plane

• Lots of names for this:
– homography, texture-map, colineation, planar projective map

• Modeled as a 2D warp using homogeneous coordinates

H pp’  

To apply a homography H
• Compute     p’ = Hp       (regular matrix multiply)
• Convert p’ from homogeneous to image coordinates

– divide by w (third) coordinate

Image rectification

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’

work out on board

Solving for homographies



Solving for homographies

A h 0

Defines a least squares problem:
2n ! 9 9 2n

• Since h is only defined up to scale, solve for unit vector "
• Solution: " = eigenvector of ATA with smallest eigenvalue
• Works with 4 or more points

(0,0,0)

The projective plane
Why do we need homogeneous coordinates?

• represent points at infinity, homographies, perspective 
projection, multi-view relationships

What is the geometric intuition?
• a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)
– all points on the ray are equivalent:  (x, y, 1) ! (sx, sy, s)

image plane

(x,y,1)
-y

x-z

Projective lines
What does a line in the image correspond to in 

projective space?

• A line is a plane of rays through origin
– all rays (x,y,z) satisfying:  ax + by + cz = 0

• A line is also represented as a homogeneous 3-vector l
l p

l

Point and line duality
• A line l is a homogeneous 3-vector  =  [a b c]
• It is " to every point (ray) p on the line:  l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?
• p is " to l1 and l2   #   p = l1 $ l2

Points and lines are dual in projective space
• given any formula, can switch the meanings of points and 

lines to get another formula

l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is " to p1 and p2   #   l = p1 $ p2 

• l is the plane normal



Ideal points and lines

Ideal point (“point at infinity”)
• p ! (x, y, 0) – parallel to image plane
• It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line
• l ! (a, b, 0) – parallel to image plane

(a,b,0)
-y

x
-z image plane

• Corresponds to a line in the image (finite coordinates)
– goes through image origin (principle point)

Homographies of points and lines
Computed by 3x3 matrix multiplication

• To transform a point:  p’ = Hp
• To transform a line:  lp=0 % l’p’=0 

– 0 = lp = lH-1Hp = lH-1p’ #  l’ = lH-1  
– lines are transformed by postmultiplication of H-1

3D projective geometry
These concepts generalize naturally to 3D

• Homogeneous coordinates
– Projective 3D points have four coords:  P = (X,Y,Z,W)

• Duality
– A plane N is also represented by a 4-vector
– Points and planes are dual in 3D: N P=0

• Projective transformations
– Represented by 4x4 matrices T:  P’ = TP,    N’ = N T-1

Matrix Projection:

3D to 2D:  “perspective” projection

What is not preserved under perspective projection?

What IS preserved?



Vanishing points

image plane

line on ground plane

vanishing point v

Vanishing point
• projection of a point at infinity

camera
center

C

Vanishing points

Properties
• Any two parallel lines have the same vanishing point v
• The ray from C through v is parallel to the lines
• An image may have more than one vanishing point

– in fact every pixel is a potential vanishing point

image plane

camera
center

C

line on ground plane

vanishing point v

line on ground plane

Vanishing lines

Multiple Vanishing Points
• Any set of parallel lines on the plane define a vanishing point
• The union of all of vanishing points from lines on the same 

plane is the vanishing line
– For the ground plane, this is called the horizon

v1 v2

Vanishing lines

Multiple Vanishing Points
• Different planes define different vanishing lines



Computing vanishing points

V

P0

D

Computing vanishing points

Properties                          (! is camera projection matrix)

• P& is a point at infinity, v is its projection

• They depend only on line direction

• Parallel lines P0 + tD, P1 + tD intersect at P&

V

P0

D

Computing the horizon

Properties
• l is intersection of horizontal plane through C with image plane
• Compute l from two sets of parallel lines on ground plane
• All points at same height as C project to l

– points higher than C project above l
• Provides way of comparing height of objects in the scene

ground plane

lC



Fun with vanishing points Perspective cues

Perspective cues Perspective cues



Are these guys the same height? Comparing heights

Vanishing
Point

Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height

What is the height of the camera?

q1

Computing vanishing points (from lines)

Intersect p1q1 with p2q2 

v

p1

p2

q2

Least squares version
• Better to use more than two lines and compute the “closest” point of 

intersection
• See notes by Bob Collins for one good way of doing this:

– http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt



C

Measuring height without a ruler

ground plane

Compute Z from image measurements
• Need more than vanishing points to do this

Z

The cross ratio
A Projective Invariant

• Something that does not change under projective transformations 
(including perspective projection)

Can permute the point ordering
• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

P1

P2

P3
P4

The cross-ratio of 4 collinear points

vZ

  r
t

b image cross ratio

Measuring height

B  (bottom of object)

T  (top of object)

R  (reference point)

ground plane

HC

scene cross ratio

&

scene points represented as image points as

R

Measuring height

RH

vz

r
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image cross ratio

H

b0

t0
vvx vy

vanishing line (horizon)



Measuring height vz

r

b

t0
vx vy

vanishing line (horizon)

v

t0

m0

What if the point on the ground plane b0 is not known?
• Here the guy is standing on the box, height of box is known
• Use one side of the box to help find b0 as shown above

b0

t1

b1

Computing (X,Y,Z) coordinates

3D Modeling from a photograph
Goal:  estimate the camera parameters

• Version 1:  solve for projection matrix

Camera calibration

• Version 2:  solve for camera parameters separately
– intrinsics (focal length, principle point, pixel size)
– extrinsics (rotation angles, translation)
– radial distortion



Vanishing points and projection matrix

= vx (X vanishing point)

Z3Y2   ,  similarly, v!v! ==

Not So Fast!  We only know v’s and o up to a scale factor

• Need more info to solve for these scale parameters 
(we won’t cover this today)

= projection of world origin

Calibration using a reference object
Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image

Issues
• must know geometry very accurately
• must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Estimating the projection matrix
Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image



Direct linear calibration Direct linear calibration

Can solve for mij by linear least squares
• use eigenvector trick that we used for homographies

Direct linear calibration
Advantage:

• Very simple to formulate and solve

Disadvantages:
• Doesn’t tell you the camera parameters
• Doesn’t model radial distortion
• Hard to impose constraints (e.g., known focal length)
• Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
• Define error function E between projected 3D points and image positions

– E is nonlinear function of intrinsics, extrinsics, radial distortion

• Minimize E using nonlinear optimization techniques
– e.g., variants of Newton’s method (e.g., Levenberg Marquart)

Alternative:  multi-plane calibration  

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!

– Intel’s OpenCV library:  http://www.intel.com/research/mrl/research/opencv/ 

– Matlab version by Jean-Yves Bouget:  http://www.vision.caltech.edu/bouguetj/
calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/ 



Some Related Techniques
Image-Based Modeling and Photo Editing

• Mok et al., SIGGRAPH 2001
• http://graphics.csail.mit.edu/ibedit/ 

Single View Modeling of Free-Form Scenes
• Zhang et al., CVPR 2001
• http://grail.cs.washington.edu/projects/svm/ 

Tour Into The Picture
• Anjyo et al., SIGGRAPH 1997
• http://koigakubo.hitachi.co.jp/little/DL_TipE.html 


