Announcements

- Project 2
- contact your partner to coordinate ASAP
- more work than the last project (> 1 week)
- you should have signed up for panorama kits

Projective geometry-what's it good for?
Uses of projective geometry

- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition

Projective geometry

Readings

- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for M
(read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Applications of projective geometry

Reconstructions by Criminisi et al.

Measurements on planes

Image rectification

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p} '
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of \mathbf{H}
- \mathbf{H} is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?

Homographies

Perspective projection of a plane

- Lots of names for this:
- homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

To apply a homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathrm{Hp} \quad$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates
- divide by w (third) coordinate

Solving for homographies

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]} \\
x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12} \\
{\left[\begin{array}{ccccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i} \\
0 & 0 & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
x_{i} & y_{i} & 1 & -y_{i}^{i} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Solving for homographies

Defines a least squares problem: minimize $\|\mathrm{Ah}-0\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

The projective plane

Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
What is the geometric intuition?
- a point in the image is a ray in projective space

- Each point (x, y) on the plane is represented by a ray ($\mathrm{sx}, \mathrm{sy}, \mathrm{s}$)
- all points on the ray are equivalent: $(x, y, 1) \cong(s x, s y, s)$

Point and line duality

- A line I is a homogeneous 3-vector $=[a b c]$
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p}=0$

What is the line I spanned by rays p_{1} and \mathbf{p}_{2} ?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I is the plane normal

What is the intersection of two lines I_{1} and I_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

- given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines

Ideal point ("point at infinity")

- $p \cong(x, y, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- I $\cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates) - goes through image origin (principle point)

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})$
- Duality
- A plane \mathbf{N} is also represented by a 4 -vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=0$
- Projective transformations
- Represented by 4×4 matrices $T: \mathbf{P}^{\prime}=\mathbf{T P}, \quad \mathbf{N}^{\prime}=\mathbf{N ~ T}^{-1}$

Homographies of points and lines
Computed by 3×3 matrix multiplication

- To transform a point: $\mathbf{p}^{\prime}=\mathbf{H p}$
- To transform a line: $\mathbf{l p}=0 \rightarrow I^{\prime} p^{\prime}=0$
$-0=\mathbf{I p}=\mathbf{I H}{ }^{-1} \mathbf{H p}=\mathbf{I H} \mathbf{H}^{-1} \mathbf{p}^{\mathbf{\prime}} \Rightarrow \mathbf{I}^{\mathbf{\prime}}=\mathbf{I \mathbf { H } ^ { - 1 }}$
- lines are transformed by postmultiplication of H^{-1}

3D to 2D: "perspective" projection

Matrix Projection:

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

What is not preserved under perspective projection?

What IS preserved?

Vanishing points

Vanishing point

- projection of a point at infinity

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of vanishing points from lines on the same plane is the vanishing line
- For the ground plane, this is called the horizon

Vanishing points

Properties

- Any two parallel lines have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact every pixel is a potential vanishing point

Vanishing lines

Multiple Vanishing Points

- Different planes define different vanishing lines

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right]
$$

Computing the horizon

Properties

- \mathbf{I} is intersection of horizontal plane through \mathbf{C} with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as \mathbf{C} project to I
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
$$

Properties $\mathbf{v}=\Pi \mathbf{P}_{\infty} \quad$ (Π is camera projection matrix)

- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{∞}

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Measuring height

Comparing heights

Computing vanishing points (from lines)

Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

Measuring height

$$
\frac{\|\mathbf{T}-\mathbf{B}\|\|\infty-\mathbf{R}\|}{\|\mathbf{R}-\mathbf{B}\|\|\infty-\mathbf{T}\|}=\frac{H}{R}
$$

scene cross ratio
$\frac{\|\mathbf{t}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{r}\right\|}{\|\mathbf{r}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{t}\right\|}=\frac{H}{R}$
image cross ratio
scene points represented as $\mathbf{P}=\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$ image points as $\mathbf{p}=\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

The cross ratio

A Projective Invariant

- Something that does not change under projective transformations (including perspective projection)
The cross-ratio of 4 collinear points

Can permute the point ordering $\quad \frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

3D Modeling from a photograph

Computing ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) coordinates

Camera calibration

Goal: estimate the camera parameters

- Version 1: solve for projection matrix

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\Pi \mathbf{X}
$$

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principle point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion

Vanishing points and projection matrix
$\boldsymbol{\Pi}=\left[\begin{array}{c|c|c|c}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]=\left[\begin{array}{llll}\boldsymbol{\pi}_{1} & \boldsymbol{\pi}_{\mathbf{2}} & \boldsymbol{\pi}_{\mathbf{3}} & \boldsymbol{\pi}_{\boldsymbol{2}}\end{array}\right]$

- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}(\mathrm{X}$ vanishing point)
- similarly, $\pi_{2}=\mathbf{v}_{\mathrm{Y}}, \pi_{3}=\mathbf{v}_{\mathrm{z}}$
- $\left.\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\right]^{T}=$ projection of world origin

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & o
\end{array}\right]^{T}
$$

Not So Fast! We only know v's and oup to a scale factor

$$
\mathbf{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & d o
\end{array}\right]^{T}
$$

- Need more info to solve for these scale parameters (we won't cover this today)

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Calibration using a reference object

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Estimating the projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct linear calibration

$$
\begin{aligned}
{\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] } & \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right] \\
u_{i} & =\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
v_{i} & =\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}}
\end{aligned}
$$

$u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}$ $v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}$

Direct linear calibration

Advantage:

- Very simple to formulate and solve

Disadvantages:

- Doesn't tell you the camera parameters
- Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
- e.g., variants of Newton's method (e.g., Levenberg Marquart)

Direct linear calibration

Can solve for m_{ij} by linear least squares

- use eigenvector trick that we used for homographies

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
- Intel's OpenCV library: http://www.intel.com/research/mr//research/opencv/
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetij
calib_doclindex.htm
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Some Related Techniques

Image-Based Modeling and Photo Editing

- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture

- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL_TipE.htm

