Announcements

Project 2

- contact your partner to coordinate ASAP
- more work than the last project (> 1 week)
- you should have signed up for panorama kits

Projective geometry—what's it good for?

Uses of projective geometry

- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- · Focus of expansion
- · Camera pose estimation, match move
- · Object recognition

Projective geometry

Readings

 Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1 - 23.5, 23.10)

 available online: <u>http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf</u>

Applications of projective geometry

Reconstructions by Criminisi et al.

Measurements on planes

Approach: unwarp then measure What kind of warp is this?

Homographies

Perspective projection of a plane

- · Lots of names for this:
 - homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

To apply a homography H

- Compute **p' = Hp** (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

 divide by w (third) coordinate

Image rectification

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of ${\bf H}$
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for $\ensuremath{\text{H}}\xspace?$

work out on board

Solving for homographies

Solving for homographies

Defines a least squares problem: minimize $||Ah - 0||^2$

- Since h is only defined up to scale, solve for unit vector $\boldsymbol{\hat{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ with smallest eigenvalue
- · Works with 4 or more points

The projective plane

Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?

• a point in the image is a ray in projective space

Each *point* (x,y) on the plane is represented by a *ray* (sx,sy,s)
 – all points on the ray are equivalent: (x, y, 1) ≅ (sx, sy, s)

Projective lines

Point and line duality

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
 - Projective 3D points have four coords: $\mathbf{P} = (X, Y, Z, W)$
- Duality
 - A plane N is also represented by a 4-vector
 - Points and planes are dual in 3D: N P=0
- Projective transformations
 - Represented by 4x4 matrices T: P' = TP, $N' = N T^{-1}$

3D to 2D: "perspective" projection

Matrix Projection:

What is not preserved under perspective projection?

What IS preserved?

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of vanishing points from lines on the same plane is the *vanishing line*
 - For the ground plane, this is called the horizon

Vanishing lines

Multiple Vanishing Points

· Different planes define different vanishing lines

Properties

- I is intersection of horizontal plane through ${\bf C}$ with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as ${\bf C}$ project to ${\bf I}$
 - points higher than ${\boldsymbol C}$ project above ${\boldsymbol I}$
- Provides way of comparing height of objects in the scene

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Measuring height without a ruler

Compute Z from image measurements • Need more than vanishing points to do this

The cross ratio

A Projective Invariant

Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$\begin{split} \text{Can permute the point ordering} & \frac{\left\| \mathbf{P}_1 - \mathbf{P}_3 \right\| \left\| \mathbf{P}_4 - \mathbf{P}_2 \right\|}{\left\| \mathbf{P}_1 - \mathbf{P}_2 \right\| \left\| \mathbf{P}_4 - \mathbf{P}_3 \right\|} \\ \bullet & 4! = 24 \text{ different orders (but only 6 distinct values)} \end{split}$$
This is the fundamental invariant of projective geometry

3D Modeling from a photograph

Computing (X,Y,Z) coordinates

Camera calibration

Goal: estimate the camera parameters

Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

Not So Fast! We only know v's and o up to a scale factor

$$\mathbf{\Pi} = \begin{bmatrix} a\mathbf{v}_X & b\mathbf{v}_Y & c\mathbf{v}_Z & do \end{bmatrix}^T$$

• Need more info to solve for these scale parameters (we won't cover this today)

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Calibration using a reference object

Place a known object in the scene

- · identify correspondence between image and scene
- · compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Estimating the projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- · compute mapping from scene to image

$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix}$	≅	$\begin{bmatrix} m_{00} \\ m_{10} \\ m_{20} \end{bmatrix}$	$m_{01} \\ m_{11} \\ m_{21}$	$m_{02} m_{12} m_{12}$	$\begin{bmatrix} m_{03} \\ m_{13} \\ m_{22} \end{bmatrix}$	$\begin{bmatrix} X_i \\ Y_i \\ Z_i \end{bmatrix}$
[1_		m ₂₀	m_{21}	m_{22}	m ₂₃]	$\begin{vmatrix} D_i \\ 1 \end{vmatrix}$

Direct linear calibration

$\left[\begin{array}{c} u_i \\ v_i \\ 1 \end{array}\right] \cong$	$\begin{bmatrix} m_{00} & m_{10} & m_{10} & m_{10} & m_{20} & m_{20} & m_{20} \end{bmatrix}$	m ₀₁ m ₁₁ m ₂₁	$m_{02} \\ m_{12} \\ m_{22}$	$\begin{bmatrix} m_{03} \\ m_{13} \\ m_{23} \end{bmatrix}$	$\left[\begin{array}{c}X_i\\Y_i\\Z_i\\1\end{array}\right]$				
$u_i = \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$									
$v_i = \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$									

$$\begin{split} u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) &= m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}\\ v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) &= m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13} \end{split}$$

$$\begin{bmatrix} X_i & Y_i & Z_i & 1 & 0 & 0 & 0 & -u_i X_i & -u_i Y_i & -u_i Z_i & -u_i \\ 0 & 0 & 0 & 0 & X_i & Y_i & Z_i & 1 & -v_i X_i & -v_i Y_i & -v_i Z_i & -v_i \end{bmatrix} \begin{vmatrix} m_{00} \\ m_{01} \\ m_{10} \\ m_{12} \\ m_{13} \\ m_{21} \\ m_{23} \\ m_{23} \\ m_{23} \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Direct linear calibration

Advantage:

· Very simple to formulate and solve

Disadvantages:

- · Doesn't tell you the camera parameters
- · Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
 E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
 - e.g., variants of Newton's method (e.g., Levenberg Marquart)

Direct linear calibration

Can solve for m_{ii} by linear least squares

· use eigenvector trick that we used for homographies

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- · Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget: <u>http://www.vision.caltech.edu/bougueti/</u> calib_doc/index.html
 - Zhengyou Zhang's web site: <u>http://research.microsoft.com/~zhang/Calib/</u>

Some Related Techniques

Image-Based Modeling and Photo Editing

- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- <u>http://grail.cs.washington.edu/projects/svm/</u>

Tour Into The Picture

- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL_TipE.html