Announcements

Project 1

• Due Wednesday at 11:59pm

Project 2

- Signup by end of day today
 - » <u>https://norfolk.cs.washington.edu/htbin-php/gtng/gtng.php</u>

1

Projection

http://www.julianbeever.net/pave.htm

Readings

• Nalwa 2.1

Projection

http://www.julianbeever.net/pave.htm

Readings

• Nalwa 2.1

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Pinhole cameras everywhere

Tree shadow during a solar eclipse

photo credit: Nils van der Burg http://www.physicstogo.org/index.cfm

Camera Obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

The first camera

• How does the aperture size affect the image?

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

A lens focuses parallel rays onto a single focal point

- focal point at a distance *f* beyond the plane of the lens
 f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
 - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Thin lenses

- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- How can we change the focus region?
- Thin lens applet: <u>http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html</u> (by Fu-Kwun Hwang)

Depth of field

Changing the aperture size affects depth of field

• A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia <u>http://en.wikipedia.org/wiki/Depth_of_field</u>

The eye

The human eye is a camera

- Iris colored annulus with radial muscles
- **Pupil** the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device
 - light-sensitive diode that converts photons to electrons
 - other variants exist: CMOS is becoming more popular
 - http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice <u>noise</u>

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

<u>color fringing</u> artifacts from <u>Bayer patterns</u>

Blooming

- charge overflowing into neighboring pixels

In-camera processing

- oversharpening can produce halos

Interlaced vs. progressive scan video

- <u>even/odd rows from different exposures</u>
- Are more megapixels better?
 - requires higher quality lens
 - noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic) More info online, e.g.,

<u>http://electronics.howstuffworks.com/digital-camera.htm</u>

<u>http://www.dpreview.com/</u>

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 Why?
- The camera looks down the *negative* z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z)
ightarrow (-drac{x}{z}, \ -drac{y}{z}, \ -d)$$

• We get the projection by throwing out the last coordinate:

$$(x,y,z)
ightarrow (-drac{x}{z}, -drac{y}{z})$$

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image
coordinates homogeneous scene
coordinates

Г

Г

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
divide by third coordinate

This is known as perspective projection

- The matrix is the **projection matrix**
- Can also formulate as a 4x4 (today's reading does this)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
divide by fourth coordinate

Perspective Projection

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

Special case of perspective projection

• Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Orthographic ("telecentric") lenses

Navitar telecentric zoom lens

http://www.lhup.edu/~dsimanek/3d/telecent.htm

Orthographic projection

Perspective projection

Camera parameters

How many numbers do we need to describe a camera?

We need to describe its *pose* in the world We need to describe its internal parameters

A Tale of Two Coordinate Systems

Z

Two important coordinate systems:1. *World* coordinate system2. *Camera* coordinate system

"The World"

Camera parameters

- •To project a point (*x*,*y*,*z*) in *world* coordinates into a camera
- •First transform (*x*,*y*,*z*) into *camera* coordinates
- •Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- •Then project into the image plane
 - Need to know camera intrinsics
- •These can all be described with matrices

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

jidentity matrix

Y

$$\mathbf{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

intrinsics projection rotation translation

- The definitions of these parameters are **not** completely standardized
- especially intrinsics—varies from one book to another

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Perspective projection

 \mathcal{Q} : **aspect ratio** (1 unless pixels are not square)

S : skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x, c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Focal length

• Can think of as "zoom"

24mm

50mm

200mm

• Related to *field of view*

Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

http://blog.photoshopcreative.co.uk/general/fix-barrel-distortion/

Distortion

Modeling distortion

To model lens distortion

 Use above projection operation instead of standard projection matrix multiplication

Many other types of projection exist...

360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
 - See http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-images.co.uk/article_pages/filt_and_shift_ts-e.html

Tilt-shift images from <u>Olivo Barbieri</u> and Photoshop <u>imitations</u>

Rotating sensor (or object)

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Photofinish

The 2000 Sydney Olympic Games - 200m Women Final

