Announcements

Project 1

- Due Wednesday at 11:59pm

Project 2

- Signup by end of day today
" https://horfolk.cs.washington.edu/htbin-php/gtng/gtng.php

Projection

http://www.julianbeever.net/pave.htm

Readings

- Nalwa 2.1

Projection

http://www.julianbeever.net/pave.htm

Readings

- Nalwa 2.1

Müller-Lyer Illusion

by Pravin Bhat

http://www.michaelbach.de/ot/sze muelue/index.html

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Pinhole cameras everywhere

Tree shadow during a solar eclipse
photo credit: Nils van der Burg
http://www.physicstogo.org/index.cfm

Camera Obscura

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

The first camera

- How does the aperture size affect the image?

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Lenses

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
- aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Thin lenses

Thin lens equation: $\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$

- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- How can we change the focus region?
- Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens e.html (by Fu-Kwun Hwang)

Depth of field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth of field

The eye

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device
- light-sensitive diode that converts photons to electrons
- other variants exist: CMOS is becoming more popular
- http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

- color fringing artifacts from Bayer patterns

Blooming

- charge overflowing into neighboring pixels

In-camera processing

- oversharpening can produce halos

Interlaced vs. progressive scan video

- even/odd rows from different exposures

Are more megapixels better?

- requires higher quality lens
- noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,

- http://electronics.howstuffworks.com/digital-camera.htm
- http://www.dpreview.com/

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
= Why?
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles (on board)

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right) } \\
& \text { divide by third coordinate }
\end{aligned}
$$

This is known as perspective projection

- The matrix is the projection matrix
- Can also formulate as a 4×4 (today's reading does this)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\underset{\text { divide by fourth coordinate }}{\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right]} \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
& {\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)}
\end{aligned}
$$

Orthographic projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(\mathrm{x}, \mathrm{y})$
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Orthographic ("telecentric") lenses

Navitar telecentric zoom lens

http://www.Ihup.edu/~dsimanek/3d/telecent.htm

Orthographic projection

Perspective projection

Camera parameters

How many numbers do we need to describe a camera?

We need to describe its pose in the world
We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

1. World coordinate system
2. Camera coordinate system

Camera parameters

-To project a point (x, y, z) in world coordinates into a camera
-First transform (x, y, z) into camera coordinates
-Need to know

- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
-Then project into the image plane
- Need to know camera intrinsics
-These can all be described with matrices

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point $\left(x_{c}{ }_{c}, y_{c}^{\prime}{ }_{c}\right)$, pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x -axis points right, y-axis points up, z-axis points backwards)

Perspective projection

in general, $\mathbf{K}=\left[\begin{array}{ccc}-f & s & c_{x} \\ 0 & -\alpha f & c_{y} \\ 0 & 0 & 1\end{array}\right] \underset{\text { matrix) }}{\substack{\text { (upper triangular } \\ \text { mat }}}$
α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right)$: principal point ($(0,0)$ unless optical axis doesn't intersect projection plane at origin)

Focal length

- Can think of as "zoom"

24 mm
50 mm

200 mm

- Related to field of view

Projection matrix

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\mathbf{R} & -\mathbf{R c}]
\end{array}\right.} \\
& \text { (} \mathrm{t} \text { in book's notation) } \\
& \boldsymbol{\Pi}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned}
$$

Projection matrix

Distortion

No distortion

Pin cushion

Barrel

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Distortion

Modeling distortion

$$
\begin{aligned}
& \begin{array}{l}
\text { Project "(} \hat{x}, \hat{y}, \hat{z}) \\
\text { to "normalized" }
\end{array} \quad x_{n}^{\prime}=\hat{x} / \widehat{z} \\
& \text { image coordinates } \quad y_{n}^{\prime}=\widehat{y} / \widehat{z} \\
& r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2} \\
& \text { Apply radial distortion } \\
& x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& \text { Apply focal length } \quad x^{\prime}=f x_{d}^{\prime}+x_{c} \\
& \text { translate image center } \\
& y^{\prime}=f y_{d}^{\prime}+y_{c}
\end{aligned}
$$

To model lens distortion

- Use above projection operation instead of standard projection matrix multiplication

Many other types of projection exist...

360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
- See http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-Images.co.uk/article pages/tilt and shift ts-e.htm

Tilt-shift images from Olivo Barbieri and Photoshop imitations

Rotating sensor (or object)

K1219

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Photofinish

The 2000 Sydney Olympic Games -200 m Women Final

