Stereo

Single image stereogram, by Niklas Een

Readings

- Trucco & Verri, Chapter 7
 - Read through 7.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2, 7.3.7 and 7.4, 7.4.1.

present a different image to each eye

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Random Dot Stereograms

Stereo is powerful.

Autostereograms

3D Movies

Horizontal filter

Little or no output

Vertical filter and horizontal filter

Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
 - camera pose (calibration)
 - point correspondence

Stereo correspondence

Determine Pixel Correspondence

• Pairs of points that correspond to same scene point

Epipolar Constraint

- Reduces correspondence problem to 1D search along *conjugate epipolar lines*
- Java demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
- An *epipole* is the projection of one camera center into the other image. (Usually called *e* and *e*'.)

Fundamental matrix

The fundamental matrix *F* captures the epipolar relationship.

$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} \begin{bmatrix} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

What line in the second image corresponds to point *p*?

What can we say about Fe or $F^{T}e$?

Stereo image rectification reproject image planes onto a common plane parallel to the line between optical centers pixel motion is horizontal after this transformation

- two homographies (3x3 transform), one for each input image reprojection
- C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for</u> <u>Stereo Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Stereo image rectification

Recall the fundamental matrix:

$$p'^T F p = 0$$

What does it look like for rectified images?

$$F^* = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \qquad p'^T H'^T F^* H p = 0$$
$$F = H'^T F^* H$$

Stereo image rectification

When will this fail?

Actual image pixels end up at infinity!

Stereo Continued

Review: epipolar lines & rectification

Given two calibrated cameras:

Each point in one image must lie on a line in the other.

All such lines go through the *epipole* (the projection of one camera center in the other image).

We can rectify images so that pairs of epipolar lines are horizontal, with the same *y* value.

The epipole for both images is then (1,0,0), a point at infinity.

Depth vs. Disparity

$$disparity = x - x' = \frac{baseline * f}{z}$$

Pop Quiz

I go see Avatar 3D with a friend. His eyes are further apart than mine.

friend

Who sees objects as being closer?

Stereo matching

Match Pixels in Conjugate Epipolar Lines

- Assume brightness constancy
- This is a tough problem
- Numerous approaches

- A good survey and evaluation: <u>http://vision.middlebury.edu/stereo/</u>

Your basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Window size

W = 3

W = 20

Effect of window size

• Smaller window

+

—

+

• Larger window

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Ground truth

Results with window search

Window-based matching (best window size) Ground truth

How could we do better?

Stereo as energy minimization

What defines a good stereo correspondence?

- 1. Match quality
 - Want each pixel to find a good match in the other image
- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

Stereo as energy minimization

Expressing this mathematically

- 1. Match quality
 - Want each pixel to find a good match in the other image

$$matchCost = \sum_{x,y} \|I(x,y) - J(x + d_{xy}, y)\|$$

- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

$$smoothnessCost = \sum_{neighbor \ pixels \ p,q} |d_p - d_q|$$

We want to minimize *Energy* = *matchCost* + *smoothnessCost*

For now, let's consider horizontal smoothness only.

E(x,d) = minimum cost solutionfrom pixels 1 to x where pixel x has disparity d

possible disparities

Better methods exist...

State of the art method

Ground truth

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

For the latest and greatest: <u>http://vision.middlebury.edu/stereo/</u>

Stereo as energy minimization

Expressing this mathematically

- 1. Match quality
 - Want each pixel to find a good match in the other image

$$matchCost = \sum_{x,y} \|I(x,y) - J(x + d_{xy}, y)\|$$

- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

$$smoothnessCost = \sum_{neighbor \ pixels \ p,q} |d_p - d_q|$$

We want to minimize *Energy* = *matchCost* + *smoothnessCost*

- With 2D smoothness, this is a special type of energy function known as an MRF (Markov Random Field)
 - Effective and fast algorithms have been recently developed:
 - » Graph cuts, belief propagation....
 - » for more details (and code): <u>http://vision.middlebury.edu/MRF/</u>

What does this smoothness do?

Penalizes surfaces not parallel to the image plane

Which surface incurs the least cost? The most cost?

Stereo Applications

View Interpolation

Suppose we put a camera at $(1-\alpha)C + \alpha C'$.

Where would X project to this image?

View Morphing

[Seitz & Dyer 96]

Stereo reconstruction pipeline

Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Active stereo with structured light

Project "structured" light patterns onto the object

• simplifies the correspondence problem

One light, one camera

Laser scanning

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object

Autostereograms

Autostereograms

How do they work?

Autostereograms

How do they work?

