

Projective Geometry and Single View Modeling

CSE 455, Winter 2010
January 29, 2010

Announcements

- Project 1a grades out
- https://catalysttools.washington.edu/gradebook/iansimon/17677
- Statistics
- Mean 82.24
- Median 86
- Std. Dev. 17.88

Project 1a Common Errors

- Assuming odd size filters
- Assuming square filters
- Cross correlation vs. Convolution

Convolution operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

- Not normalizing the Gaussian filter
- Resizing only works for shrinking not enlarging

Review from last time

Image rectification

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p}^{\prime}
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of \mathbf{H}
- H is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?

Solving for homographies

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
& & & \vdots & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Defines a least squares problem: minimize $\|\mathrm{Ah}-\mathbf{0}\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

The projective plane

- Why do we need homogeneous coordinates?
- represent points at infinity, homographies, perspective projection, multiview relationships
- What is the geometric intuition?
- a point in the image is a ray in projective space

- Each point (x, y) on the plane is represented by a ray ($\mathrm{sx}, \mathrm{sy}, \mathrm{s}$)
- all points on the ray are equivalent: $(x, y, 1) \cong(s x, s y, s)$

Projective lines

- What does a line in the image correspond to in projective space?

- A line is a plane of rays through origin
- all rays (x, y, z) satisfying: $a x+b y+c z=0$

$$
\text { in vector notation: } \begin{array}{r}
0=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
\mathbf{l}
\end{array}
$$

- A line is also represented as a homogeneous 3 -vector I

Vanishing points

Vanishing point

- projection of a point at infinity

Vanishing points

- Properties
- Any two parallel lines have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact every pixel is a potential vanishing point

Today

- Projective Geometry continued

$$
11
$$

$$
11
$$

Perspective cues

Comparing heights

Neel Joshi, CSE 455, Winter 2010

Measuring height

Neel Joshi, CSE 455, Winter 2010

Computing vanishing points (from lines)

- Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
- Something that does not change under projective transformations (including perspective projection)
The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering

$$
\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}
$$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

ground plane
scene points represented as $\mathbf{P}=\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$

$$
\frac{\|\mathbf{T}-\mathbf{B}\|\|\infty-\mathbf{R}\|}{\|\mathbf{R}-\mathbf{B}\|\|\infty-\mathbf{T}\|}=\frac{H}{R}
$$

scene cross ratio

$$
\begin{aligned}
& \|\mathbf{t}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{r}\right\| \\
& \|\mathbf{r}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{t}\right\| \\
& \text { image cross ratio }
\end{aligned}=\frac{H}{R}
$$

Measuring height

Neel Joshi, CSE 455, Winter 2010

Measuring height

What if the point on the ground plane \mathbf{b}_{0} is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find \mathbf{b}_{0} as shown above

Monocular Depth Cues

- Stationary Cues:
- Perspective
- Relative size
- Familiar size
- Aerial perspective
- Occlusion
- Peripheral vision
- Texture gradient

Familiar Size

Arial Perspective

Occlusion

Peripheral Vision

Texture Gradient

Camera calibration

- Goal: estimate the camera parameters
- Version 1: solve for projection matrix

$$
\mathbf{X}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principle point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion

Vanishing points and projection matrix

$$
\left.\boldsymbol{\Pi}=\begin{array}{c|c|c|c}
* * & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{\pi}_{1} & \boldsymbol{\pi}_{2} & \boldsymbol{\pi}_{3} & \boldsymbol{\pi}_{4}
\end{array}\right]
$$

- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_{2}=\mathbf{v}_{\mathrm{y}}, \boldsymbol{\pi}_{3}=\mathbf{v}_{\mathrm{z}}$
- $\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}=$ projection of world origin

$$
\mathbf{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{0}
\end{array}\right]
$$

Not So Fast! We only know v's and \mathbf{o} up to a scale factor

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & d \mathbf{o}
\end{array}\right]
$$

- Need a bit more work to get these scale factors...

Finding the scale factors...

- Let's assume that the camera is reasonable
- Square pixels
- Image plane parallel to sensor plane
- Principle point in the center of the image

$$
\boldsymbol{\Pi}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / f
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & t_{1} \\
0 & 1 & 0 & t_{2} \\
0 & 0 & 1 & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1}^{\prime} \\
r_{21} & r_{22} & r_{23} & t_{2}^{\prime} \\
r_{31} / f & r_{32} / f & r_{33} / f & t_{3}^{\prime} / f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
t_{1}^{\prime} \\
t_{2}^{\prime} \\
t_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & d \mathbf{0}
\end{array}\right]
$$

Solving for f

$$
\begin{aligned}
& {\left[\begin{array}{llll}
v_{x 1} & v_{y 1} & v_{z 1} & o_{1} \\
v_{x 2} & v_{y 2} & v_{z 2} & o_{2} \\
v_{x 3} & v_{y 3} & v_{z 3} & o_{3}
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} / a & r_{12} / b & r_{13} / c & t_{1} / d \\
r_{21} / a & r_{22} / b & r_{23} / c & t^{\prime} / d \\
r_{31} / a f & r_{32} / b f & r_{33} / c f & t_{3}^{\prime} / d f
\end{array}\right]} \\
& {\left[\begin{array}{llll}
\mathrm{v}_{\mathrm{X}} & \mathrm{v}_{\mathrm{Y}} & \mathrm{v}_{\mathrm{Z}} & \mathrm{o}
\end{array}\right]} \\
& v_{x 1} v_{y 1}+v_{x 2} v_{y 2}+f^{2} v_{x 3} v_{y 3}=0 \quad \square f=\sqrt{\frac{v_{x 1} v_{y 1}+v_{x 2} v_{y 2}}{-v_{x 3} v_{y 3}}}
\end{aligned}
$$

Solving for a, b, and c

$$
\left.\left.\begin{array}{l}
\left.\qquad \begin{array}{l}
\left\|\begin{array}{cccc}
v_{x 1} / f \\
v_{x 2} / f \\
v_{x 3}
\end{array}\right\|
\end{array} \| \begin{array}{ccc}
v_{y 1} / f & v_{z 1} / f & o_{1} / f \\
v_{y 2} / f & v_{z 2} / f & o_{2} / f \\
v_{y 3} & v_{z 3} & o_{3}
\end{array}\right]
\end{array}\right]=\begin{array}{|l|l}
\text { Norm }
\end{array}\left\|\begin{array}{ll}
r_{11} / a \\
r_{21} / a \\
r_{31} / a
\end{array}\right\| \begin{array}{ccc}
r_{12} / b & r_{13} / c & t_{1}^{\prime} / d \\
r_{22} / b & r_{23} / c & t_{2}^{\prime} / d \\
r_{32} / b & r_{33} / c & t_{3}^{\prime} / d
\end{array}\right]
$$

Solve for a, b, c

- Divide the first two rows by f, now that it is known
- Now just find the norms of the first three columns
- Once we know a, b, and c, that also determines R

How about d?

- Need a reference point in the scene

Solving for d

$$
\left[\begin{array}{c}
w u \\
w v \\
w
\end{array}\right]=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1}^{\prime} / d \\
r_{21} & r_{22} & r_{23} & t_{2}^{\prime} / d \\
r_{31} & r_{32} & r_{33} & t_{3}^{\prime} / d
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
H \\
1
\end{array}\right]
$$

Suppose we have one reference height H

- E.g., we known that $(0,0, H)$ gets mapped to (u, v)

$$
u=\frac{r_{13} H+t_{1}^{\prime} / d}{r_{33} H+t_{3}^{\prime} / d} \quad d=\frac{t_{1}^{\prime}-u t_{3}^{\prime}}{u r_{33} H-r_{13} H}
$$

Finally, we can solve for t

$$
\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
t_{1}^{\prime} \\
t_{2}^{\prime} \\
t_{3}^{\prime}
\end{array}\right]
$$

Calibration using a reference object

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Estimating the projection matrix

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct linear calibration

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]} \\
& u_{i}=\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
& v_{i}=\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
& u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
& v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13} \\
& {\left[\begin{array}{cccccccccccc}
X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & 0 & -u_{i} X_{i} & -u_{i} Y_{i} & -u_{i} Z_{i} & -u_{i} \\
0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -v_{i} X_{i} & -v_{i} Y_{i} & -v_{i} Z_{i} & -v_{i}
\end{array}\right]\left[\begin{array}{l}
m_{00} \\
m_{01} \\
m_{02} \\
m_{03} \\
m_{10} \\
m_{11} \\
m_{12} \\
m_{13} \\
m_{20} \\
m_{21} \\
m_{22} \\
m_{23}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Direct linear calibration

$$
\left[\begin{array}{cccccccccccc}
X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\
0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\
X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\
0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}
\end{array}\right]\left[\begin{array}{l}
m_{00} \\
m_{01} \\
m_{02} \\
m_{03} \\
m_{10} \\
m_{11} \\
m_{12} \\
m_{13} \\
m_{20} \\
m_{21} \\
m_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Can solve for $m_{i j}$ by linear least squares

- use eigenvector trick that we used for homographies

Direct linear calibration

- Advantage:
- Very simple to formulate and solve
- Disadvantages:
- Doesn't tell you the camera parameters
- Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
- E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
- e.g., variants of Newton's method (e.g., Levenberg Marquart)

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
- Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguet//calib doc/index.html
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Some Related Techniques

Image-Bosed Modeling and Photo Editing

- Image-Based Modeling and Photo Editing
- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Some Related Techniques

- Single View Modeling of Free-Form Scenes
- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/

