Segmentation (continued)

Reading:

Shapiro & Stockton, p. 279-289

Reminder:

Office hours after class today in CSE 212

Clustering

Segmenting images by pixel color

• This is a clustering problem!

Objective

- Each point should be as close as possible to a cluster center
 - Minimize sum squared distance of each point to closest center

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Break it down into subproblems

Suppose I tell you the cluster centers c_i

- Q: how to determine which points to associate with each c_i?
- A: for each point p, choose closest c_i

Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c_i to be the mean of all points in the cluster

K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
- 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i . Put p into cluster i
- 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
- 4. If c_i have changed, repeat Step 2

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - does not always find the global minimum of objective function:

clusters
$$i$$
 points p in cluster i $\|p - c_i\|^2$

Probabilistic clustering

Basic questions

- what's the probability that a point **x** is in cluster m?
- what's the shape of each cluster?

K-means doesn't answer these questions

Basic idea

- instead of treating the data as a bunch of points, assume that they are all generated by sampling from a probability distribution
- This is called a **generative model**
 - defined by a vector of parameters $\pmb{\theta}$

Mixture of Gaussians

One generative model is a mixture of Gaussians (MOG)

- K Gaussian blobs with means μ_b covariance matrices V_b , dimension d - blob *b* defined by: $P(x|\mu_b, V_b) = \frac{1}{\sqrt{(2\pi)^d |V_b|}} e^{-\frac{1}{2}(x-\mu_b)^T V_b^{-1}(x-\mu_b)}$
- blob *b* is selected with probability $lpha_b$
- the likelihood of observing **x** is a weighted mixture of Gaussians

$$P(x|\theta) = \sum_{b=1}^{K} \alpha_b P(x|\theta_b)$$

• where $\theta = [\mu_1, ..., \mu_n, V_1, ..., V_n]$

Expectation maximization (EM)

Goal

• find blob parameters θ that maximize the likelihood function:

$$P(data|\theta) = \prod_{x} P(x|\theta)$$

Approach:

- 1. E step: given current guess of blobs, compute ownership of each point
- 2. M step: given ownership probabilities, update blobs to maximize likelihood function
- 3. repeat until convergence

Graph-based segmentation

What if we look at relationships between pixels?

Images as graphs

Fully-connected graph

- node for every pixel
- link between every pair of pixels, p,q
- cost c_{pq} for each link
 - c_{pq} measures similarity
 - » similarity is *inversely proportional* to difference in color and position

Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (low similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph

Link Cut

- set of links whose removal makes a graph disconnected
- cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

Find minimum cut

- gives you a segmentation
- fast algorithms exist for doing this

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch A

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- elasticity proportional to cost
- vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - for more details, see
 - » J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997

Interpretation as a Dynamical System

More on Segmentation

Active Contour Models

Kass et al. 1988

Markov Random Fields Boykov et al. 2001

Mean Shift

Comaniciu and Meer 2002

Grabcut [Rother et al., SIGGRAPH 2004]

Intelligent Scissors (demo)

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (t_0 , t_1 , and t_2) are shown in green.

Mean Filtering with Integral Images

- Integral Image (or summed-area table)
 - Precomputation: O(n)
 - Sum over rectangle: O(1)

$$S[x, y] = \sum_{i=1}^{x} \sum_{j=1}^{y} A[i, j]$$

Matlab code

```
function B = meanfilt(A, k)
```

```
[m n] = size(A);
p1 = ceil(k/2);
p2 = floor(k/2);
```

```
P = zeros(m+k-1, n+k-1);
P(p1:end-p2, p1:end-p2) = A / (k*k);
```

```
S = cumsum(P, 1);
```

- S = cumsum(S, 2);
- B = S(k:end, k:end)
 - S(1:end-k+1,k:end)
 - S(k:end, 1:end-k+1)
 - + S(1:end-k+1,1:end-k+1);