Segmentation (continued)

Reading:
Shapiro \& Stockton, p. 279-289

Reminder:
Office hours after class today in CSE 212

Clustering

Segmenting images by pixel color

- This is a clustering problem!

Objective

- Each point should be as close as possible to a cluster center
- Minimize sum squared distance of each point to closest center

$$
\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Break it down into subproblems

Suppose I tell you the cluster centers c_{i}

- Q: how to determine which points to associate with each c_{i} ?
- A: for each point p, choose closest c_{i}

Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c_{i} to be the mean of all points in the cluster

K-means clustering

K-means clustering algorithm

1. Randomly initialize the cluster centers, $\mathrm{c}_{1}, \ldots, \mathrm{C}_{\mathrm{K}}$
2. Given cluster centers, determine points in each cluster

- For each point p, find the closest c_{i}. Put p into cluster i

3. Given points in each cluster, solve for c_{i}

- Set c_{i} to be the mean of points in cluster i

4. If c_{i} have changed, repeat Step 2

Java demo: htpp:/home.dei.polimi.t/matteucc/Clustering/tutorial hitm/AppletKM.html

Properties

- Will always converge to some solution
- Can be a "local minimum"
- does not always find the global minimum of objective function:

$$
\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Probabilistic clustering

Basic questions

- what's the probability that a point \mathbf{x} is in cluster m ?
- what's the shape of each cluster?

K-means doesn't answer these questions

Basic idea

- instead of treating the data as a bunch of points, assume that they are all generated by sampling from a probability distribution
- This is called a generative model
- defined by a vector of parameters θ

Mixture of Gaussians

One generative model is a mixture of Gaussians (MOG)

- K Gaussian blobs with means μ_{b} covariance matrices V_{b}, dimension d
- blob b defined by: $\quad P\left(x \mid \mu_{b}, V_{b}\right)=\frac{1}{\sqrt{(2 \pi)^{d}\left|V_{b}\right|}} e^{-\frac{1}{2}\left(x-\mu_{b}\right)^{T} V_{b}^{-1}\left(x-\mu_{b}\right)}$
- blob b is selected with probability α_{b}
- the likelihood of observing \mathbf{x} is a weighted mixture of Gaussians

$$
P(x \mid \theta)=\sum_{b=1}^{K} \alpha_{b} P\left(x \mid \theta_{b}\right)
$$

- where $\theta=\left[\mu_{1}, \ldots, \mu_{n}, V_{1}, \ldots, V_{n}\right]$

Expectation maximization (EM)

Goal

- find blob parameters θ that maximize the likelihood function:

Approach:

$$
P(\text { data } \mid \theta)=\prod_{x} P(x \mid \theta)
$$

1. E step: given current guess of blobs, compute ownership of each point
2. M step: given ownership probabilities, update blobs to maximize likelihood function
3. repeat until convergence

Graph-based segmentation

What if we look at relationships between pixels?

Images as graphs

Fully-connected graph

- node for every pixel
- link between every pair of pixels, p,q
- cost $\mathbf{c}_{\text {pq }}$ for each link
- c_{pq} measures similarity
" similarity is inversely proportional to difference in color and position

Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (low similarity)
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

Cuts in a graph

Link Cut

- set of links whose removal makes a graph disconnected
- cost of a cut:

$$
\operatorname{cut}(A, B)=\sum_{p \in A, q \in B} c_{p, q}
$$

Find minimum cut

- gives you a segmentation
- fast algorithms exist for doing this

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$
N c u t(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(A)}+\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(B)}
$$

- volume $(A)=$ sum of costs of all edges that touch A

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- elasticity proportional to cost
- vibration "modes" correspond to segments
- can compute these by solving an eigenvector problem
- for more details, see
" J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997

Interpretation as a Dynamical System

More on Segmentation

Active Contour Models
Kass et al. 1988

Markov Random Fields
Boykov et al. 2001

Mean Shift

Comaniciu and Meer 2002

Grabcut [Rother et al., SIGGRAPH 2004]

Intelligent Scissors (demo)

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $\left(t_{0}, t_{1}\right.$, and $\left.t_{2}\right)$ are shown in green.

Mean Filtering with Integral Images

- Integral Image (or summed-area table)
- Precomputation: $O(n)$
- Sum over rectangle: $O(1)$

$$
S[x, y]=\sum_{i=1}^{x} \sum_{j=1}^{y} A[i, j]
$$

$$
\sum_{i=a}^{c} \sum_{i=b}^{d} A[i, j]=S[c, d]-S[c, b]-S[a, d]+S[a, b]
$$

Matlab code

```
function B = meanfilt(A,k)
```

$[m \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
$\mathrm{p} 1=\operatorname{ceil}(\mathrm{k} / 2)$;
p2 $=$ floor (k/2);
$\mathrm{P}=\operatorname{zeros}(\mathrm{m}+\mathrm{k}-1, \mathrm{n}+\mathrm{k}-1)$;
$\mathrm{P}(\mathrm{p} 1:$ end-p2,p1:end-p2) = A / (k*k);
S = cumsum ($\mathrm{P}, 1$);
$S=$ cumsum (S, 2);
$B=S(k: e n d, k: e n d)$
- $S(1: e n d-k+1, k: e n d)$
- $S(k: e n d, 1: e n d-k+1)$
$+S(1: e n d-k+1,1: e n d-k+1) ;$

