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Review from last time
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Lenses

 A lens focuses parallel rays onto a single focal point

 Thin lens equation:
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Depth of field

 Changing the aperture size affects depth of field

 A smaller aperture increases the range in which the object is 
approximately in focus

http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f32.jpg
http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f5.jpg
http://en.wikipedia.org/wiki/Depth_of_field
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Modeling projection

 Projection equations

• We get the projection by throwing out the last coordinate:

Distant objects 
are smaller
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Projection

 Perspective Projection

divide by third coordinate

 Orthographic Project

f f

f f
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Distortions/Artifacts
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Digital Cameras

 Basic process:

 photons hit a detector

 the detector becomes charged

 the charge is read out as brightness

 Sensor types:

 CCD (charge-coupled device)

 CMOS
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Today

 More on Cameras

 Projective Geometry



Neel Joshi, CSE 455, Winter 2010

Issues with digital cameras
 Noise

 big difference between consumer vs. SLR-style cameras

 low light is where you most notice noise

 Compression

 creates artifacts except in uncompressed formats (tiff, raw) 

 Color

 color fringing artifacts from Bayer patterns

 Blooming

 charge overflowing into neighboring pixels

 In-camera processing

 oversharpening can produce halos

 Interlaced vs. progressive scan video

 even/odd rows from different exposures

 Are more megapixels better?

 requires higher quality lens

 noise issues

More info online, e.g.,

http://electronics.howstuffworks.com/digital-
camera.htm

http://www.dpreview.com/

http://www.dpreview.com/learn/?/key=noise
http://www.dpreview.com/learn/?/key=jpeg
http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_01.htm
http://electronics.howstuffworks.com/digital-camera4.htm
http://www.dpreview.com/learn/?/key=blooming
http://www.dpreview.com/learn/?/key=sharpening
http://www.axis.com/products/video/camera/progressive_scan.htm
http://electronics.howstuffworks.com/digital-camera.htm
http://electronics.howstuffworks.com/digital-camera.htm
http://electronics.howstuffworks.com/digital-camera.htm
http://electronics.howstuffworks.com/digital-camera.htm
http://www.dpreview.com/
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Large Aperture (Shallow Depth of Field)
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Synthetic Aperture [Vaish et al.]
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Bullet Time (from the Matrix)
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Projective geometry—what’s it good for?

 Uses of projective geometry

 Drawing

 Measurements

 Mathematics for projection

 Undistorting images

 Focus of expansion

 Camera pose estimation, match move

 Object recognition



Neel Joshi, CSE 455, Winter 2010

Applications of projective geometry 

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.
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3D Modeling from a photograph



Neel Joshi, CSE 455, Winter 2010

Measurements on planes

Approach:  unwarp then measure

What kind of warp is this?
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Image rectification

To unwarp (rectify) an image

• solve for homography H given p and p’

• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H

– H is defined up to an arbitrary scale factor

– how many points are necessary to solve for H?

p
p’
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How many points?
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Solving for homographies
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Solving for homographies

A h 0

Defines a least squares problem:

2n × 9 9 2n

• Since h is only defined up to scale, solve for unit vector ĥ

• Solution: ĥ = eigenvector of ATA with smallest eigenvalue

• Works with 4 or more points
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(0,0,0)

The projective plane

 Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective projection, multi-
view relationships

 What is the geometric intuition?

 a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s)

image plane

(x,y,1)

-y

x-z
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Projective lines

 What does a line in the image correspond to in projective 
space?

• A line is a plane of rays through origin

– all rays (x,y,z) satisfying:  ax + by + cz = 0

 


















z

y

x

cba0       :notationvectorin

• A line is also represented as a homogeneous 3-vector l

l p
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l

Point and line duality

 A line l is a homogeneous 3-vector

 It is  to every point (ray) p on the line:  l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?

• p is  to l1 and l2  p = l1  l2
Points and lines are dual in projective space

• given any formula, can switch the meanings of points and 
lines to get another formula

l1

l2

p

What is the line l spanned by rays p1 and p2 ?

• l is  to p1 and p2  l = p1  p2 

• l is the plane normal
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Ideal points and lines

 Ideal point (“point at infinity”)

 p  (x, y, 0) – parallel to image plane

 It has infinite image coordinates

(sx,sy,0)-y

x-z image plane

Ideal line

• l  (a, b, 0) – parallel to image plane

(a,b,0)

-y

x

-z image plane

• Corresponds to a line in the image (finite coordinates)

– goes through image origin (principle point)
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Homographies of points and lines

 Computed by 3x3 matrix multiplication

 To transform a point:  p’ = Hp

 To transform a line:  lp=0  l’p’=0
– 0 = lp = lH-1Hp = lH-1p’  l’ = lH-1

– lines are transformed by postmultiplication of H-1
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3D projective geometry

 These concepts generalize naturally to 3D

 Homogeneous coordinates

 Projective 3D points have four coords:  P = (X,Y,Z,W)

 Duality

 A plane N is also represented by a 4-vector

 Points and planes are dual in 3D: N P=0

 Projective transformations

 Represented by 4x4 matrices T:  P’ = TP,    N’ = N T-1



Neel Joshi, CSE 455, Winter 2010

3D to 2D:  “perspective” projection

 Matrix Projection: ΠPp 
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What is not preserved under perspective projection?

What IS preserved?
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Geometric properties of perspective projection

 Geometric properties of perspective projection

 Points go to points

 Lines go to lines

 Planes go to whole image or half-plane

 Polygons go to polygons

 Angles & distances not preserved

 Degenerate cases:

 line through focal point yields point

 plane through focal point yields line
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Vanishing points
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Vanishing points

 Properties

 Any two parallel lines have the same vanishing point v

 The ray from C through v is parallel to the lines

 An image may have more than one vanishing point

 in fact every pixel is a potential vanishing point
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Vanishing lines

 Multiple Vanishing Points

 Any set of parallel lines on the plane define a vanishing point

 The union of all of vanishing points from lines on the same plane is the 
vanishing line

 For the ground plane, this is called the horizon
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Vanishing lines

 Multiple Vanishing Points

 Different planes define different vanishing lines
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Computing vanishing points

DPP t 0
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Computing vanishing points

 Properties

 P is a point at infinity, v is its projection

 They depend only on line direction

 Parallel lines P0 + tD, P1 + tD intersect at P

DPP t 0

ΠPv
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Computing the horizon

 Properties

 l is intersection of horizontal plane through C with image plane

 Compute l from two sets of parallel lines on ground plane

 All points at same height as C project to l

 points higher than C project above l

 Provides way of comparing height of objects in the scene

l
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Above or Below?
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Fun with vanishing points


