

Projective Geometry

CSE 455, Winter 2010
January 27, 2010

Review from last time

Lenses

- A lens focuses parallel rays onto a single focal point
- Thin lens equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

Depth of field

- Changing the aperture size affects depth of field
- A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth of field

Modeling projection

- Projection equations

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Projection

- Perspective Projection

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / f & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} {\left[\begin{array}{c}
x \\
y \\
-z / f
\end{array}\right] \Rightarrow\left(-f \frac{x}{z},-f \frac{y}{z}\right) } \\
& \text { divide by third coordinate }
\end{aligned}
$$

- Orthographic Project

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Distortions/Artifacts

The image is blurred and appears colored at the fringe.

Digital Cameras

- Basic process:
- photons hit a detector
- the detector becomes charged
- the charge is read out as brightness
- Sensor types:
- CCD (charge-coupled device)
- CMOS

Today

- More on Cameras
- Projective Geometry

Issues with digital cameras

- Noise
- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise
- Compression
- creates artifacts except in uncompressed formats (tiff, raw)
- Color
- color fringing artifacts from Bayer patterns
- Blooming
- charge overflowing into neighboring pixels
- In-camera processing
- oversharpening can produce halos
- Interlaced vs. progressive scan video
- even/odd rows from different exposures
- Are more megapixels better?
- requires higher quality lens
- noise issues

More info online, e.g.,
http://electronics.howstuffworks.com/digitalcamera.htm
http://www.dpreview.com/

Large Aperture (Shallow Depth of Field)

Synthetic Aperture [Vaish et al.]

Bullet Time (from the Matrix)

Projective geometry—what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition

Applications of projective geometry

Vermeer's Music Lesson

Reconstructions by Criminisi et al.

3D Modeling from a photograph

Measurements on planes

Approach: unwarp then measure
What kind of warp is this?

Image rectification

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p}^{\prime}
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of \mathbf{H}
- H is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?

How many points?

Solving for homographies

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]} \\
x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12} \\
{\left[\begin{array}{lllllll}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i}
\end{array}-x_{i}^{\prime} y_{i}-x_{i}^{\prime}\right.} \\
0
\end{array} 00 \begin{array}{llll}
x_{i} & y_{i} & 1 & -y_{i}^{\prime} x_{i}
\end{array}-y_{i}^{\prime} y_{i}-y_{i}^{\prime}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Solving for homographies

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
& & & \vdots & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Defines a least squares problem: minimize $\|\mathrm{Ah}-\mathbf{0}\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

The projective plane

- Why do we need homogeneous coordinates?
- represent points at infinity, homographies, perspective projection, multiview relationships
- What is the geometric intuition?
- a point in the image is a ray in projective space

- Each point (x, y) on the plane is represented by a ray ($\mathrm{sx}, \mathrm{sy}, \mathrm{s}$)
- all points on the ray are equivalent: $(x, y, 1) \cong(s x, s y, s)$

Projective lines

- What does a line in the image correspond to in projective space?

- A line is a plane of rays through origin
- all rays (x, y, z) satisfying: $a x+b y+c z=0$

$$
\text { in vector notation: } \begin{array}{r}
0=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
\mathbf{l}
\end{array}
$$

- A line is also represented as a homogeneous 3 -vector I

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p}=0$

What is the line I spanned by rays \mathbf{p}_{1} and \mathbf{p}_{2} ?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I is the plane normal

What is the intersection of two lines \mathbf{I}_{1} and \mathbf{I}_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

- given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines

- Ideal point ("point at infinity")
- $\mathrm{P} \cong(\mathrm{x}, \mathrm{y}, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- $I \cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principle point)

Homographies of points and lines

- Computed by 3×3 matrix multiplication
- To transform a point: $\mathbf{p}^{\prime}=\mathbf{H p}$
- To transform a line: $\mathbf{l p}=0 \rightarrow I^{\prime} p^{\prime}=0$
$-0=\mathbf{I p}=\mathbf{I} \mathbf{H}^{-1} \mathbf{H p}=\mathbf{I} \mathbf{H}^{-1} \mathbf{p}^{\prime} \Rightarrow \mathbf{I}^{\prime}=\mathbf{I} \mathrm{H}^{-1}$
- lines are transformed by postmultiplication of $\mathbf{H}^{\mathbf{- 1}}$

3D projective geometry

- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(X, Y, Z, W)$
- Duality
- A plane \mathbf{N} is also represented by a 4 -vector
- Points and planes are dual in 3D: N P=0
- Projective transformations
- Represented by 4×4 matrices $\mathbf{T}: \mathbf{P}^{\mathbf{\prime}}=\mathbf{T P}, \quad \mathbf{N}^{\mathbf{\prime}}=\mathbf{N T}^{\mathbf{- 1}}$

3D to 2D: "perspective" projection

- Matrix Projection: $\mathbf{p}=\left[\begin{array}{c}w x \\ w y \\ w\end{array}\right]=\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\boldsymbol{\Pi} \boldsymbol{P}$

What is not preserved under perspective projection?

What IS preserved?

Geometric properties of perspective projection

- Geometric properties of perspective projection
- Points go to points
- Lines go to lines
- Planes go to whole image or half-plane
- Polygons go to polygons
- Angles \& distances not preserved
- Degenerate cases:
- line through focal point yields point
- plane through focal point yields line

Vanishing points

Vanishing point

- projection of a point at infinity

Vanishing points

- Properties
- Any two parallel lines have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact every pixel is a potential vanishing point

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of vanishing points from lines on the same plane is the vanishing line
- For the ground plane, this is called the horizon

Vanishing lines

- Multiple Vanishing Points
- Different planes define different vanishing lines

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right]
$$

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{∞}

Computing the horizon

- Properties
- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Above or Below?

Fun with vanishing points

