Computing light source directions

Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is

Recall the rule for specular reflection

For a perfect mirror, light is reflected about \mathbf{N}

$$
I_{e}=\left\{\begin{array}{cl}
I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

We see a highlight when $\mathbf{V}=\mathbf{R}$

- then L is given as follows:

$$
\mathbf{L}=2(\mathbf{N} \cdot \mathbf{R}) \mathbf{N}-\mathbf{R}
$$

Computing the light source direction

Chrome sphere that has a highlight at position \mathbf{h} in the image

image plane
Can compute θ (and hence \mathbf{N}) from this figure Now just reflect \mathbf{V} about \mathbf{N} to obtain \mathbf{L}

Depth from normals

What we have

What we want

Depth from normals

Get a similar equation for $\mathbf{V}_{\mathbf{2}}$

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation
- On the boundary we have only one constraint.

Trick for handling shadows

Weight each equation by the pixel brightness:

$$
I_{i}\left(I_{i}\right)=I_{i}\left[k_{d} \mathbf{N} \cdot \mathbf{L}_{\mathbf{i}}\right]
$$

Gives weighted least-squares matrix equation:

$$
\left[\begin{array}{lll}
I_{1}^{2} & \ldots & I_{n}^{2}
\end{array}\right]=k_{d} \mathbf{N}^{T}\left[\begin{array}{lll}
I_{1} \mathbf{L}_{1} & \ldots & I_{n} \mathbf{L}_{\mathbf{n}}
\end{array}\right]
$$

Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before

Example

Results...

from Athos Georghiades
http://cvc.yale.edu/people/Athos.html

Limitations

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections are difficult
- Single light source illumination
- camera and lights have to be distant
- calibration requirements
- measure light source directions, intensities
- camera response function

Newer work addresses some of these issues

Some pointers for further reading:

- Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." IJCV, Vol. 49 No. 2/3, pp 215-227.
- Hertzmann \& Seitz, Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE Trans. PAMI 2005
- Basri, Jacobs and Kemelmacher Photometric Stereo with General Unknown Lighting, International Journal of Computer Vision (IJCV) 2007

Hertzmann \& Seitz, Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE Trans. PAMI 2005

Shiny things

स思：：

Virtual views

Velvet

Virtual Views

Brushed Fur

Brushed Fur

Virtual Views

- Basri, Jacobs and Kemelmacher Photometric Stereo with General Unknown Lighting, International Journal of Computer Vision (IJCV) 2007

Illumination Modeling

Spherical Harmonics

Cumulative Energy

Photometric Stereo

Factorization to Shape and Light

SVD recovers L and S up to an ambiguity

Results with arbitrary unknown lighting

3D Face Shape Reconstruction

Input: Single Image, general lighting, pose

Output: 3D shape

Kemelmacher and Basri Molding Face Shapes by Example IEEE Trans. PAMI

One approach

- Represent input face as a combination of hundreds of 3D face in a database:

Our approach

> Input image Single reference model

Harmonic representation of lighting

albedo n surface normal $\mathrm{n}=(\mathrm{n}, n$
Positive values Negative values

$$
\begin{array}{r}
\mathbb{I}(x, y)=\mathbb{R}(\mathbf{n} ; \rho, \mathbf{l}) \approx \rho \sum_{\mathrm{i}=\mathbf{0}}^{\mathrm{K}-1} 1_{\mathrm{i}} Y_{\mathrm{i}}(\mathbf{n}) \\
\\
37.6 \%
\end{array}
$$

87.5\%

In practice
~95\% accuracy

- Lambertian reflectance
- Accounts for attached shadows
- Arbitrary illumination (point sources,

99.2\% diffuse, combinations...)

Formulation

$$
\mathrm{I}(\mathrm{x}, \mathrm{y})=\mathrm{R}(\mathbf{n} ; \rho, \mathbf{l}) \approx \rho \sum_{\mathrm{i}=\mathbf{0}}^{\mathrm{K}-\mathbf{1}} 1_{\mathrm{i}} Y_{\mathrm{i}}(\mathbf{n})
$$

Unknown surface normal:
$\mathbf{n}(\mathrm{x}, \mathrm{y})=\frac{\mathbf{1}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}+\mathbf{1}}}(\mathrm{p}, \mathrm{q},-\mathbf{1})^{\mathrm{T}}$
$p(x, y)=\partial z / \partial x$
$q(x, y)=\partial z / \partial y$

Known image:

Known reference model:

$\min _{1, z, \rho} \int_{\Omega}\left(I(x, y)-\rho \sum_{i=0}^{K-1} 1_{i} Y_{i}(n)\right)^{2}+\lambda_{1}\left(\Delta G * d_{z}(x, y)\right)^{2}+\lambda_{2}\left(\Delta G * d_{\rho}(x, y)\right)^{2} d x d y$

$$
d_{z}(x, y)=z(x, y)-z_{r e f}(x, y) \quad d_{\rho}(x, y)=\rho(x, y)-\rho_{\text {ref }}(x, y)
$$

Reconstruction steps

$$
\min _{1, z, \rho} \int_{\Omega}\left(I(x, y)-\rho \sum_{i=0}^{K-1} 1_{i} Y_{i}(n)\right)^{2}+\lambda_{1}\left(\Delta G_{i} *_{z}(x, y)\right)^{2}+\lambda_{2}\left(\Delta G^{*} *_{\rho}(x, y)\right)^{2} d x d y
$$

Solve for lighting:

Different faces experience the same lighting in similar way. So use reference face to fill in the missing data.
Solve for depth:

$$
\begin{aligned}
& \mathrm{I}(\mathrm{x}, \mathrm{y})=\rho_{\mathrm{ref}} 1_{0}+\frac{\rho_{\text {ref }}}{\mathrm{N}_{\text {ref }}}\left(1_{1} \mathrm{p}+1_{2} \mathrm{q}-1_{3}\right) \\
& \mathrm{N}=\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}+1}
\end{aligned}
$$

Linear PDE in $z(x, y)$
Boundaries: We let partial derivatives across boundaries to vanish

Results

on images downloaded from the internet

Expressions

Results: unknown pose

