
Computing light source directions

Trick:  place a chrome sphere in the scene

• the location of the highlight tells you where the light source is



For a perfect mirror, light is reflected about N

Recall the rule for specular reflection

We see a highlight when V = R

• then L is given as follows:
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Computing the light source direction

Can compute  (and hence N) from this figure

Now just reflect V about N to obtain L
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Chrome sphere that has a highlight at position h in the image

image plane

sphere in 3D





N 

x
h
 x

c

r

y
h
 y

c

r

r
2
 x

2
 y

2

r



































Depth from normals

Forsyth & Ponce, Sec. 5.4

What we have What we want



Depth from normals

Get a similar equation for V2

• Each normal gives us two linear 

constraints on z

• compute z values by solving a matrix 

equation

• On the boundary we have only one 

constraint. 

V1

V2

N



Trick for handling shadows

Weight each equation by the pixel brightness:

Gives weighted least-squares matrix equation:

Solve for N, kd as before



Example



Results…

from Athos Georghiades
http://cvc.yale.edu/people/Athos.html

http://cvc.yale.edu/people/Athos.html


Limitations

• doesn’t work for shiny things, semi-translucent things

• shadows, inter-reflections are difficult

• Single light source illumination

• camera and lights have to be distant

• calibration requirements

– measure light source directions, intensities

– camera response function

Newer work addresses some of these issues

Some pointers for further reading:
• Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for 

Surface Reconstruction." IJCV, Vol. 49 No. 2/3, pp 215-227. 

• Hertzmann & Seitz, Example-Based Photometric Stereo: Shape Reconstruction with 

General, Varying BRDFs.” IEEE Trans. PAMI 2005

• Basri, Jacobs and Kemelmacher  Photometric Stereo with General Unknown Lighting, 

International Journal of Computer Vision (IJCV) 2007

http://www.eecs.harvard.edu/~zickler/helmholtz.html
http://www.eecs.harvard.edu/~zickler/helmholtz.html
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://www.wisdom.weizmann.ac.il/~vision/photostereo/


Hertzmann & Seitz, Example-Based 

Photometric Stereo: Shape 

Reconstruction with General, Varying 

BRDFs.” IEEE Trans. PAMI 2005

http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/
http://grail.cs.washington.edu/projects/sam/


Shiny things

“Orientation consistency”



same surface normal















Virtual views



Velvet



Virtual Views



Brushed Fur



Brushed Fur



Virtual Views



• Basri, Jacobs and Kemelmacher 
Photometric Stereo with General Unknown 
Lighting, International Journal of Computer 
Vision (IJCV) 2007



Illumination Modeling
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Spherical Harmonics 
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Photometric Stereo
Factorization to Shape and Light 



Results with arbitrary unknown lighting



3D Face Shape Reconstruction

Input: Single Image, 
general lighting, pose

Output: 3D shape

Kemelmacher and Basri Molding Face Shapes by Example 

IEEE Trans. PAMI 



One approach

• Represent input face as a combination of 
hundreds of 3D face in a database:

=f(               ,             ,              ,              ,               ,              …)=F(               ,             ,              ,              ,               ,              …)



Our approach

=f(               ,             ,              ,              ,               ,              …)

unknown lighting

unknown boundaries

unknown albedo

significant differences in shape including 

- expression

- gender

- race

Input image is a guide to “mold” a single reference model.

Input

image

Single 

reference 

model

Our 3D reconstruction



Harmonic representation of lighting

Positive values

Negative values

albedo

surface normal

37.6%

87.5%

99.2%

In practice 

~95% accuracy
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• Lambertian reflectance

• Accounts for attached shadows

• Arbitrary illumination (point sources, 

diffuse, combinations…)
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Formulation
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Unknown surface normal:

Unknown harmonic coeff.
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Reconstruction steps
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Linear PDE in z(x,y)

Boundaries: We let partial derivatives 

across boundaries to vanish
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Different faces experience the same 

lighting in similar way. So use 

reference face to fill in the missing 

data.

Solve for lighting:
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Assume that albedo and N come 

from the reference model

Solve for depth:



Results 
on images downloaded from the internet



Expressions



Results: unknown pose

8.1 ± 5.7% 6.9 ± 5.3% 7.7 ± 5.7% 7.3 ± 6.1% 8 ± 7.2%


