Announcements

- Project 3b due Friday

Last time

- Shape from shading
- Photometric Stereo

Lambertian reflection

$$
I_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} I_{i} \underbrace{}_{\text {is light source intensity }}
$$

Lets assume that $I_{i}=1$
can achieve this by dividing each pixel in the image by I_{i}

Shape from shading

Input:

- Single Image

Output:

- 3D shape of the object in the image

Shape from shading

Suppose $k_{d}=1$
 $$
I=k_{d} \mathbf{N} \cdot \mathbf{L}
$$
 $$
=\mathbf{N} \cdot \mathbf{L}
$$
 $$
=\cos \theta_{i}
$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape

$$
\begin{aligned}
& I(x, y)=\cos (0.5) \\
& \theta=60^{\circ}, \phi=?
\end{aligned}
$$

- But can be if you add some additional info, for example
- Assume normals along the sihouette are known
- Constraints on neighboring normals-"integrability"
- Smoothness

Surface Normal

$$
N=\left(n_{x}, n_{y}, n_{z}\right)^{T}
$$

A surface $\quad z(x, y)$
A point on the surface: $\quad(x, y, z(x, y))^{T}$
Tangent directions

$$
\begin{gathered}
t_{x}=\left(1,0, z_{x}\right)^{T} \quad t_{y}=\left(0,1, z_{y}\right)^{T} \\
N=\frac{t_{x} \times t_{y}}{\left\|t_{x} \times t_{y}\right\|}=\frac{1}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}}\left(-z_{x},-z_{y}, 1\right)^{T}
\end{gathered}
$$

Shape from shading

$$
I(x, y)=N \bullet L=\frac{1}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}} \quad \sqrt{z_{x}^{2}+z_{y}^{2}}=\sqrt{\frac{1}{I(x, y)^{2}}-1}
$$

$$
L=(0,0,1)^{T}
$$

But both unknowns come from an integrable surface:
$Z(x, y)$ thus we can use the integrability constraint:

$$
z_{x y}=z_{y x}
$$

Photometric stereo

Input:

- Several Images
* same object
* different lightings
* same pose

Output:

- 3D shape of the object in the images
- Albedo
- Lighting

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{1}^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right] \mathbf{N}
$$

Solving the equations

$$
\begin{aligned}
{\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] } & =\underbrace{\left[\begin{array}{l}
\mathbf{L}_{1}{ }^{T} \\
\mathbf{L}_{2}{ }^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right]}_{\mathbf{I}_{\times 1}} \underbrace{k_{d} \mathbf{N}}_{3_{3 \times 3}} \\
\mathbf{G} & =\mathbf{L}^{-1} \mathbf{I} \\
k_{d} & =\|\mathbf{G}\| \\
\mathbf{N} & =\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

More than three lights

Get better results by using more lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{1} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right] k_{d} \mathbf{N}
$$

Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathrm{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before
What's the size of L'L?

Example

Recovered normal field

Color images

The case of RGB images

- get three sets of equations, one per color channel:

$$
\begin{aligned}
\mathbf{I}_{R} & =k_{d R} \mathbf{L N} \\
\mathbf{I}_{G} & =k_{d G} \mathbf{L N} \\
\mathbf{I}_{B} & =k_{d B} \mathbf{L N}
\end{aligned}
$$

- Simple solution: first solve for \mathbf{N} using one channel or grayscale
- Then substitute known \mathbf{N} into above equations to get $\mathrm{k}_{\mathrm{d}} \mathrm{s}$

$$
k_{d}=\frac{\sum_{i} I_{i} L_{i} N^{T}}{\sum_{i}\left(L_{i} N^{T}\right)^{2}}
$$

Where do we get the lighting directions?

Capture lighting variation

Illuminate subject from many incident directions

Example images:

Computing light source directions

Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is

Recall the rule for specular reflection

For a perfect mirror, light is reflected about \mathbf{N}

$$
I_{e}=\left\{\begin{array}{cl}
I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

We see a highlight when $\mathbf{V}=\mathbf{R}$

- then L is given as follows:

$$
\mathbf{L}=2(\mathbf{N} \cdot \mathbf{R}) \mathbf{N}-\mathbf{R}
$$

Computing the light source direction

Chrome sphere that has a highlight at position \mathbf{h} in the image

image plane
Can compute θ (and hence \mathbf{N}) from this figure Now just reflect \mathbf{V} about \mathbf{N} to obtain \mathbf{L}

Depth from normals

What we have

What we want

