Announcements

- Project 3a due today
- Project 3b due next Friday

Last time we learned:

- Light, light field
- BRDF
- Reflectance models:
- Specular
- Lambertian
- Phong
- etc.

Lambertian (diffuse) reflection

Diffuse reflection governed by Lambert's law

- Viewed brightness does not depend on viewing direction
- Brightness does depend on direction of illumination
- This is the model most often used in computer vision

L, N, V unit vectors
$\mathrm{I}_{\mathrm{e}}=$ outgoing radiance
$I_{i}=$ incoming radiance

Lambert's Law: $I_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} I_{i}$ k_{d} is called albedo
BRDF for Lambertian surface

$$
\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=k_{d} \cos \theta_{i}
$$

Lambertian reflection

$$
I_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} I_{i} \underbrace{}_{\text {is light source intensity }}
$$

Lets assume that $I_{i}=1$
can achieve this by dividing each pixel in the image by I_{i}

Shape from shading

Input:

- Single Image

Output:

- 3D shape of the object in the image

Shape from shading

Input:

- Single Image

Output:

- 3D shape of the object in the image

Problem is ill-posed: many shapes can give rise to same image.
Common assumptions:

- Lighting is known
- Lambertian reflectance + uniform albedo
- Boundary conditions are known

Shape from shading

Suppose $k_{d}=1$

$$
\begin{aligned}
I & =k_{d} \mathbf{N} \cdot \mathbf{L} \\
& =\mathbf{N} \cdot \mathbf{L} \\
& =\cos \theta_{i}
\end{aligned}
$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape

$$
\begin{aligned}
& I(x, y)=\cos \theta=0.5 \\
& \theta=60^{\circ}, \phi=?
\end{aligned}
$$

- But can be if you add some additional info, for example
- Assume normals along the sihouette are known
- Constraints on neighboring normals-"integrability"
- Smoothness

Surface Normal

$$
N=\left(n_{x}, n_{y}, n_{z}\right)^{T}
$$

A surface $\quad z(x, y)$
A point on the surface: $\quad(x, y, z(x, y))^{T}$
Tangent directions

$$
\begin{gathered}
t_{x}=\left(1,0, z_{x}\right)^{T} \quad t_{y}=\left(0,1, z_{y}\right)^{T} \\
N=\frac{t_{x} \times t_{y}}{\left\|t_{x} \times t_{y}\right\|}=\frac{1}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}}\left(-z_{x},-z_{y}, 1\right)^{T}
\end{gathered}
$$

Shape from shading

$$
I(x, y)=N \bullet L=\frac{-l_{1} z_{x}-l_{2} z_{y}+l_{3}}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}}
$$

Assume that $L=(0,0,1)^{T}$

And get that

$$
I(x, y)=N \cdot L=\frac{1}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}}
$$

Two unknowns

$$
z_{x} \quad z_{y}
$$

Shape from shading

$$
I(x, y)=N \bullet L=\frac{1}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}}
$$

But both unknowns come from an integrable surface:
$Z(x, y)$ thus we can use the integrability constraint:

$$
Z_{x y}=Z_{y x}
$$

Shape from shading

$$
\begin{aligned}
& I(x, y)=N \bullet L=\frac{1}{\sqrt{z_{x}^{2}+z_{y}^{2}+1}} \\
& \sqrt{z_{x}^{2}+z_{y}^{2}+1}=\frac{1}{I(x, y)} \sqrt{z_{x}^{2}+z_{y}^{2}}=\sqrt{\frac{1}{I(x, y)^{2}}-1} \\
& \|\nabla z\|=\sqrt{\frac{1}{I(x, y)^{2}}-1} \quad \begin{array}{l}
\text { is called Eikonal equation } \\
\text { can be solved using variation } \\
\text { of Dijkstra's algorithm }
\end{array}
\end{aligned}
$$

Need to know the extrema points for this

Results

Shape from shading

It is hard to get shape from shading work well in practice.

The assumptions are quite restrictive But this is recovery of 3D from single 2D image

Fewer assumptions are needed if we have several images of the same object under different lightings

Photometric stereo

Input:

- Several Images
* same object
* different lightings
* same pose

Output:

- 3D shape of the object in the images
- Albedo
- Lighting

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{1}^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right] \mathbf{N}
$$

Solving the equations

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] }=\underbrace{\left[\begin{array}{l}
\mathbf{L}_{1}{ }^{T} \\
\mathbf{L}_{2}{ }^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right]}_{\mathbf{I}_{\times 1}} \underbrace{}_{\mathbf{J}^{T}} k_{d} \mathbf{N} \\
& \mathbf{G} \\
& \mathbf{G}=\mathbf{L}^{-1} \mathbf{I} \\
& k_{d}=\|\mathbf{G}\| \\
& \mathbf{N}=\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

More than three lights

Get better results by using more lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{1} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right] k_{d} \mathbf{N}
$$

Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathrm{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before
What's the size of L'L?

Example

Recovered normal field

