Topics to Review

- image processing
 - filtering & convolution
 - edge detection
 - resampling
 - seam carving
- cameras
 - projective geometry
 - single view modeling
 - epipolar geometry
- alignment
 - structure from motion
 - mosaics

- features
 - corner detection
 - SIFT
 - matching & RANSAC
- dense reconstruction
 - photometric stereo
 - two-view stereo
 - multiview stereo
- other
 - segmentation & recognition
 - color & lighting
 - tracking & optical flow

Last Time: 2-view stereo

Input: calibrated images from several viewpoints Output: 3D object model

Figures by Carlos Hernandez

Multiview Stereo

Home The Tour Sign Up Explore -			
Search	Photos	Groups People	
		statue of liberty	
We found 80,865 results matching statue and of and liberty. View: Most relevant • Most recent • Most interesting Show: Details • Thumbnails			
From mbell1975	From <u>sbcreate11</u>	From Marion Doss	From Barry Wright
From phileole	From almk	From sbcreate11	From sbcreate11
From sigardiner	From <u>sigardiner</u>	From <u>elesa.ah</u>	From nicoatridoe

Stereo: basic idea

Choosing the stereo baseline

Large Baseline

What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

pixel matching score

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Basic Approach

- Choose a reference view
- Use your favorite stereo algorithm BUT
 - > replace two-view SSD with SSSD over all baselines

Limitations

- Only gives a depth map (not an "object model")
- Won't work for widely distributed views:

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Problem: visibility

Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions

- Match only nearby photos [Narayanan 98]
- Use NCC instead of SSD, Ignore NCC values < threshold [Hernandez & Schmitt 03]

Popular matching scores

• SSD (Sum Squared Distance)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

NCC (Normalized Cross Correlation)

$$\frac{\sum_{x,y} (W_1(x,y) - \overline{W_1}) (W_2(x,y) - \overline{W_2})}{\sigma_{W_1} \sigma_{W_2}}$$
• where $\overline{W_i} = \frac{1}{n} \sum_{x,y} W_i$ $\sigma_{W_i} = \sqrt{\frac{1}{n} \sum_{x,y} (W_i - \overline{W_i})^2}$

• what advantages might NCC have?

Handling Visiblity: Two Approaches

Treat occlusions as outliers

Model occlusions geometrically

Which points are visible in which images?

Forward Visibility

Inverse Visibility

Volumetric stereo

Goal: Determine occupancy, "color" of points in V

Discrete formulation: Voxel Coloring

Goal: Assign RGB (or empty) values to voxels in V photo-consistent with images

Voxel coloring solutions

- 1. Two colors (shape from silhouettes)
 - Volume intersection [Baumgart 1974]
 - > For more info: Rapid octree construction from image sequences. R. Szeliski, CVGIP: Image Understanding, 58(1):23-32, July 1993. (this paper is apparently not available online) or
 - > W. Matusik, C. Buehler, R. Raskar, L. McMillan, and S. J. Gortler, *Image-Based Visual Hulls*, SIGGRAPH 2000 (pdf 1.6 MB)
- 2. Many colors, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]
- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Reconstruction from Silhouettes

Approach:

- Backproject each silhouette
- Intersect backprojected volumes

Volume intersection

Reconstruction Contains the True Scene

- But is generally not the same
- In the limit (all views) get visual hull
 - > Complement of all lines that don't intersect S

Voxel algorithm for volume intersection

Color voxel black if in silhouette for every image

- O(), for M images, N³ voxels
- Don't have to search 2^{N^3} possible scenes!

Properties of Volume Intersection

Pros

- Easy to implement, fast
- Accelerated via octrees [Szeliski 1993] or interval techniques [Matusik 2000]

Cons

- No concavities
- Reconstruction is not photo-consistent (though it does agree with the silhouettes)
- Requires identification of silhouettes

Voxel Coloring Solutions

- 1. Two colors (silhouettes)
 - Volume intersection [Baumgart 1974]
- 2. Many colors, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]
 > For more info: <u>http://www.cs.washington.edu/homes/seitz/papers/ijcv99.pdf</u>
- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Problem: non-uniqueness

• Many scenes could give rise to the same images.

Photoconsistency and Visibility

A point p is *photoconsistent* with respect to volume V if its projection is the same color in all cameras in which it is visible.

Claim: if p is not photoconsistent with respect to V, and V' is a subset of V, then p is not photoconsistent with respect to V'.

Question

If all points on V_1 are photoconsistent, and all points on V_2 are photoconsistent, then...

Space Carving Approach

Problem: in what order should we look at the voxels?

Depth Ordering: visit occluders first!

Condition: depth order is the *same for all input views*

Voxel Coloring Results (Video)

Dinosaur Reconstruction

72 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI

Flower Reconstruction

70 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI

Handling Visiblity: Two Approaches

Treat occlusions as outliers

Model occlusions geometrically

Multi-view stereo from Internet Collections

[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007]

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

Notre Dame de Paris

653 images 313 photographers

129 Flickr images taken by 98 photographers

merged model of Venus de Milo

56 Flickr images taken by 8 photographers

merged model of Pisa Cathedral

Some other work...

Unconstrained camera viewpoints

- Space carving [Kutulakos & Seitz 98]
- Evolving a surface
 - Level sets [Faugeras & Keriven 98]
 - More recent work by Pons et al.

Global optimization

- Graph cut approaches
 - > [Kolmogoriv & Zabih, ECCV 2002]
 - > [Vogiatzis et al., PAMI 2007]
- Modeling shiny (and other reflective) surfaces
 - e.g., Zickler et al., Helmholtz Stereopsis

Combining photoconsistency and silhouettes

• [Kolev & Cremers 2008]