

Mosaics con't

CSE 455, Winter 2010
February 10, 2010

Announcements

- The Midterm:
- Due this Friday, Feb 12, at the beginning of class
- Late exams will not be accepted
- Additional Office Hour today:
- 2:30 to 3:30 in CSE 212 (the normal place)

Review From Last Time

How to do it?

- Similar to Structure from Motion, but easier
- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Panoramic Stitching

Input

Aligning images

- How to account for warping?
- Translations are not enough to align the images
- Homographies!!!

Structure from Motion: Image reprojection

Panoramas: Image reprojection

Image reprojection

- The mosaic has a natural interpretation in 3D
- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Image warping with homographies

image plane in front black area
where no pixel
maps to

Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Correspondence and Transformation

- Compute correspondence between second image and first
- Compute transformation between second image and first
- What kind of transformation
- Homography!!!
- Do we know the correspondence?

Let's come up with an algorithm

Let's come up with an algorithm

- Guess some matches
- Compute a transformation using those matches
- Check if the transformation is good

RANSAC

- Randomly choose a set of K potential correspondences
- Typically K is the minimum size that lets you fit a model
- How many for a
- Translation
- rotation?
- Affine?
- Homography?
- Fit a model (e.g., translation, homography) to those correspondences
- Count the number of inliers that "approximately" fit the model
- Need a threshold on the error
- Repeat as many times as you can
- Choose the model that has the largest set of inliers
- Refine the model by doing a least squares fit using ALL of the inliers

Simple Case: Translation

Computing image translations

What do we do about the "bad" matches?

RAndom SAmple Consensus

Select one match, count inliers
(in this case, only one)

RAndom SAmple Consensus

Select one match, count inliers
(4 inliers)

Least squares fit

Find "average" translation vector for largest set of inliers

RANSAC

- Same basic approach works for any transformation
- Translation, rotation, homographies, etc.
- Very useful tool
- General version
- Randomly choose a set of K correspondences
- Typically K is the minimum size that lets you fit a model
- Fit a model (e.g., homography) to those correspondences
" Count the number of inliers that "approximately" fit the model
- Need a threshold on the error
- Repeat as many times as you can
- Choose the model that has the largest set of inliers
- Refine the model by doing a least squares fit using ALL of the inliers

Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Assembling the panorama

- Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
- small errors accumulate over time

Image Blending

Feathering

Neel Joshi, CSE 455, Winter 2010

Effect of window size

Effect of window size

Neel Joshi, CSE 455, Winter 2010

Good window size

"Optimal" window: smooth but not ghosted

- Doesn't always work...

