

Mosaics con't

CSE 455, Winter 2010

February 10, 2010

- The Midterm:
 - Due this Friday, Feb 12, at the beginning of class
 - Late exams will not be accepted
- Additional Office Hour today:
 - 2:30 to 3:30 in CSE 212 (the normal place)

Review From Last Time

How to do it?

- Similar to Structure from Motion, but easier
- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - If there are more images, repeat

Panoramic Stitching

Input

Aligning images

- How to account for warping?
 - Translations are not enough to align the images
 - Homographies!!!

Structure from Motion: Image reprojection

Panoramas: Image reprojection

Image reprojection

- The mosaic has a natural interpretation in 3D
 - The images are reprojected onto a common plane
 - The mosaic is formed on this plane

Image warping with homographies

Basic Procedure

- Take a sequence of images from the same position
 - Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

- Take a sequence of images from the same position
 - Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Correspondence and Transformation

- Compute correspondence between second image and first
- Compute transformation between second image and first

- What kind of transformation
 - Homography!!!
- Do we know the correspondence?

Let's come up with an algorithm

Let's come up with an algorithm

Guess some matches

Compute a transformation using those matches

• Check if the transformation is good

RANSAC

- Randomly choose a set of K potential correspondences
 - Typically K is the minimum size that lets you fit a model
 - How many for a
 - Translation
 - rotation?
 - Affine?
 - Homography?
- Fit a model (e.g., translation, homography) to those correspondences
- Count the number of inliers that "approximately" fit the model
 - Need a threshold on the error
- Repeat as many times as you can
- Choose the model that has the largest set of inliers
- Refine the model by doing a least squares fit using ALL of the inliers

Simple Case: Translation

Computing image translations

What do we do about the "bad" matches?

<u>RAndom SAmple Consensus</u>

Select *one* match, count *inliers* (in this case, only one)

<u>RAndom SAmple Consensus</u>

Select *one* match, count *inliers* (4 inliers)

Least squares fit

Find "average" translation vector for largest set of inliers

RANSAC

- Same basic approach works for any transformation
 - Translation, rotation, homographies, etc.
 - Very useful tool

- General version
 - Randomly choose a set of K correspondences
 - Typically K is the minimum size that lets you fit a model
 - Fit a model (e.g., homography) to those correspondences
 - Count the number of inliers that "approximately" fit the model
 - Need a threshold on the error
 - Repeat as many times as you can
 - Choose the model that has the largest set of inliers
 - Refine the model by doing a least squares fit using ALL of the inliers

Basic Procedure

- Take a sequence of images from the same position
 - Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Basic Procedure

- Take a sequence of images from the same position
 - Rotate the camera about its optical center
- Compute correspondence between second image and first
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Assembling the panorama

••)						
-----	--	--	--	--	--	--

Stitch pairs together, blend, then crop

• Error accumulation

small errors accumulate over time

Image Blending

Feathering

Effect of window size

1

Neel Joshi, CSE 455, Winter 2010

Effect of window size

1+ 0+

Good window size

0

"Optimal" window: smooth but not ghosted

• Doesn't always work...