

Mosaics

CSE 455, Winter 2010
February 8, 2010

Announcements

- The Midterm went out Friday
- See email to the class
- Also linked off the course colander
- Open-note, Open-book, Non Open-Friend
- Clarification questions only in office hours, over email, and on the forum
- You may still ask us general questions about the course material

Announcements

- Professor office hours are M 2:30-3:30
- 6 TA hours during the week (WF 4-5:30 and TTh 10-11:30).
- We've enjoyed interactive with those that have come
- We would love to see more of you!
- We are also available for questions over email or to meet by appointment outside of these times.
- Late Days, the weekends don't count

Announcements

- Class forum: https://catalysttools.washington.edu/gopost/board/iansimon/15087/
- Course reader:
http://www.cs.washington.edu/education/courses/455/10wi/reader.htm
- Other resources:

Richard Szeliski's book Computer Vision: Algorithms and Applications. The book draft is currently available online.
R. Hartley, A.Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2000.
R. Hartley, A.Zisserman., Multiple View Geometry - Tutorial. CVPR (1999).
D. A. Forsyth, J. Ponce. Computer Vision a Modern Approach. Prentice Hall, 2003.

Review From Last Time

Structure from Motion

- Snavely, Seitz, Szeliski, Photo Tourism: Exploring Photo Collections in 3D. SIGGRAPH 2006.
http://phototour.cs.washington.edu/Photo Tourism.pdf

Structure from motion

Reconstruction (side)

- Input: images with points in correspondence

$$
p_{i, j}=\left(u_{i, j} v_{i, j}\right)
$$

- Output
- structure: 3D location \mathbf{x}_{i} for each point p_{i}
- motion: camera parameters $\mathbf{R}_{j}, \mathbf{t}_{j}$
- Objective function: minimize reprojection error

SfM objective function

- Given point \mathbf{x} and rotation and translation \mathbf{R}, \mathbf{t}

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\mathbf{R x}+\mathbf{t} \quad \begin{gathered}
u^{\prime}=\frac{f x^{\prime}}{z^{\prime}} \\
v^{\prime}=\frac{f y^{\prime}}{z^{\prime}}
\end{gathered} \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})
$$

- Minimize sum of squared reprojection errors:

Solving structure from motion

- Minimizing g is difficult:
- g is non-linear due to rotations, perspective division
- lots of parameters: 3 for each 3D point, 6 for each camera
- difficult to initialize
- gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares (NLLS) optimization (bundle adjustment)
- Levenberg-Marquardt is one common algorithm for NLLS
- Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm, http://www.ics.forth.gr/~lourakis/sba/
- http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm

Scene reconstruction

Mosaics

VR Seattle: http://www.vrseattle.com/
Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2 mars97.html

- Today’s Readings
- Szeliski and Shum paper (sections 1 and 2, skim the rest)
- http://www.cs.washington.edu/education/courses/455/08wi/readings/szeliskiShum97.pdf

Image Mosaics

Goal

- Stitch together several images into a seamless composite

How to do it?

- Easier than Structure from Motion or Harder?
- Easier
- Let's Start on your next project right now in class
- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Then what?
- In Class Exercise

Panoramic Stitching

Input

- Try doing using your brain, eyes, and hands - Can you align the images?
- Write an rough algorithm
- What steps are there, what do you need to find, what things are tricky

How to do it?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Aligning images

- How to account for warping?
- Translations are not enough to align the images
- Photoshop demo

Image reprojection

- The mosaic has a natural interpretation in 3D
- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Image reprojection

- Basic question
- How to relate two images from the same camera center?
- how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Don't need to know what's in the scene!

Image reprojection

- Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another

Homographies

- Perspective projection of a plane
- Lots of names for this:
- homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

$$
\begin{array}{r}
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]} \\
\mathbf{p}^{\prime}
\end{array} \frac{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}{\mathbf{H}} \mathbf{\mathbf { p }}
$$

To apply a homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathbf{H p} \quad$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates
- divide by w (third) coordinate

Image warping with homographies

image plane in front black area
where no pixel
maps to

