## Announcements

- Office hours today 2:30-3:30
- Graded midterms will be returned at the end of the class

Lighting and Reflectance

## Lighting and Reflectance



The squares marked $A$ and $B$ are the same shade of gray

## Lighting



Lets go to paintbrush

## Lighting



Lighting can have a big effect on how an object looks.


Modeling the effect of lighting can be used for:
Recognition - particularly face recognition
Shape reconstruction
Motion estimation
Re-rendering / Re-lighting

## Lighting is Complex

Lighting can come from any direction and at any strength

Infinite degree of freedom


## Capture lighting variation

## Illuminate subject from many incident directions



## Example images:


$+.3$




## Image brightness

What determines the brightness of an image pixel?


- lighting
- Surface BRDF (local reflectance)
- Shadowing
- Inter-reflections (global reflectance)


## What is light?

Electromagnetic radiation (EMR) moving along rays in space

- $R(\lambda)$ is EMR, measured in units of power (watts)
- $\lambda$ is wavelength


Light field

- We can describe all of the light in the scene by specifying the radiation (or "radiance" along all light rays) arriving at every point in space and from every direction


$$
R(X, Y, Z, \theta, \phi, \lambda, t)
$$

## The light field

$$
R(X, Y, Z, \theta, \phi, \lambda, t)
$$

- Known as the plenoptic function
- If you know $R$, you can predict how the scene would appear from any viewpoint.
- Common to think of lighting at infinity (a function on the sphere, a 2D space)
- Usually $\operatorname{drop} \lambda$ and time parameters



## What is light?

Electromagnetic radiation (EMR) moving along rays in space

- $R(\lambda)$ is EMR, measured in units of power (watts)
$-\lambda$ is wavelength


Perceiving light

- How do we convert radiation into "color"?
- What part of the spectrum do we see?


## Visible light

We "see" electromagnetic radiation in a range of wavelengths

## Light spectrum

The appearance of light depends on its power spectrum

- How much power (or energy) at each wavelength


Our visual system converts a light spectrum into "color"

- This is a rather complex transformation


## Light transport



## Light sources

## Basic types

- point source
- Distant point source
- area source
- a union of point sources

More generally

- a light field can describe *any* distribution of light sources

What happens when light hits an object?

## Typical Reflections


ideal specular

rough specular


Lambertian

## What happens when a light ray hits an object?

Some of the light gets absorbed

- converted to other forms of energy (e.g., heat)

Some gets transmitted through the object

- possibly bent, through "refraction"
- a transmitted ray could possible bounce back

Some gets reflected

- as we saw before, it could be reflected in multiple directions (possibly all directions) at once

Let's consider the case of reflection in detail

## The BRDF

The Bidirectional Reflection Distribution Function

- Given an incoming ray ( $\theta_{i}, \phi_{i}$ ) and outgoing ray ( $\theta_{e}, \phi_{e}$ ) what proportion of the incoming light is reflected along outgoing ray?


Answer given by the BRDF: $\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)$

## Constraints on the BRDF

## Energy conservation

- Quantity of outgoing light $\leq$ quantity of incident light
- integral of BRDF $\leq 1$

Helmholtz reciprocity

- reversing the path of light produces the same reflectance



## Diffuse (Lambertian) reflection



## Diffuse reflection

- Dull, matte surfaces like chalk or latex paint
- Microfacets scatter incoming light randomly
- Effect is that light is reflected equally in all directions


## Diffuse reflection

Diffuse reflection governed by Lambert's law

- Viewed brightness does not depend on viewing direction
- Brightness does depend on direction of illumination
- This is the model most often used in computer vision

$\mathbf{L}, \mathbf{N}, \mathbf{V}$ unit vectors
$\mathrm{I}_{\mathrm{e}}=$ outgoing radiance
$\mathrm{I}_{\mathrm{i}}=$ incoming radiance


Lambert's Law: $I_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} I_{i}$ $k_{d}$ is called albedo
BRDF for Lambertian surface
$\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=k_{d} \cos \theta_{i}$

## Specular reflection

For a perfect mirror, light is reflected about $\mathbf{N}$


$$
I_{e}=\left\{\begin{array}{cl}
I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$



Near-perfect mirrors have a highlight around $\mathbf{R}$

- common model:

$$
I_{e}=k_{s}(\mathbf{V} \cdot \mathbf{R})^{n_{s}} I_{i}
$$

## Specular reflection



Moving the light source


Changing $\mathrm{n}_{\mathrm{s}}$

## Phong illumination model

## Phong approximation of surface reflectance

- Assume reflectance is modeled by three components
- Diffuse term
- Specular term
- Ambient term (to compensate for inter-reflected light)

$$
I_{e}=k_{a} I_{a}+I_{i}\left[k_{d}(\mathbf{N} \cdot \mathbf{L})_{+}+k_{s}(\mathbf{V} \cdot \mathbf{R})_{+}^{n_{s}}\right]
$$

$\mathbf{L}, \mathbf{N}, \mathbf{V}$ unit vectors
$\mathrm{I}_{\mathrm{e}}=$ outgoing radiance
$\mathrm{I}_{\mathrm{i}}=$ incoming radiance
$\mathrm{I}_{\mathrm{a}}=$ ambient light
$\mathrm{k}_{\mathrm{a}}=$ ambient light reflectance factor
$(\mathrm{x})_{+}=\max (\mathrm{x}, 0)$


## BRDF models

Phenomenological

- Phong [75]
- Ward [92]
- Lafortune et al. [97]
- Ashikhmin et al. [00]

Physical

- Cook-Torrance [81]
- Dichromatic [Shafer 85]
- He et al. [91]

Here we're listing only some well-known examples

- Next time Photometric Stereo
- Project 3 is due on Feb 26
- Don't forget to take panorama kit from Stephen

