Edge Detection

SHADOW

From Sandlot Science

Today's reading

• <u>Cipolla & Gee on edge detection</u> (available online)

Project 1a

assigned last Friday

due this Friday

Let F be the image, H be the kernel (of size 2k+1 x 2k+1), and G be the output image $G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

This is called a **convolution** operation:

$$G = H * F$$

Cross-Correlation

Convolution

•Not commutative

•Commutative F * G = G * F

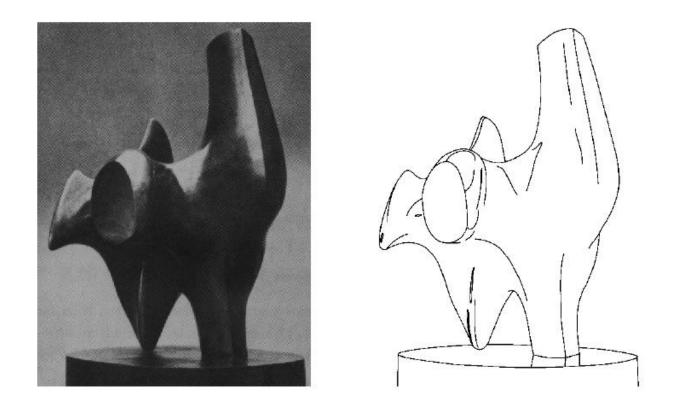
•Associative F * (G * H) = (F * G) * H

•Associative F * (G * H) = (F * G) * H

•No Identity

•Identity $F * \delta = F$

Edge detection



Convert a 2D image into a set of curves

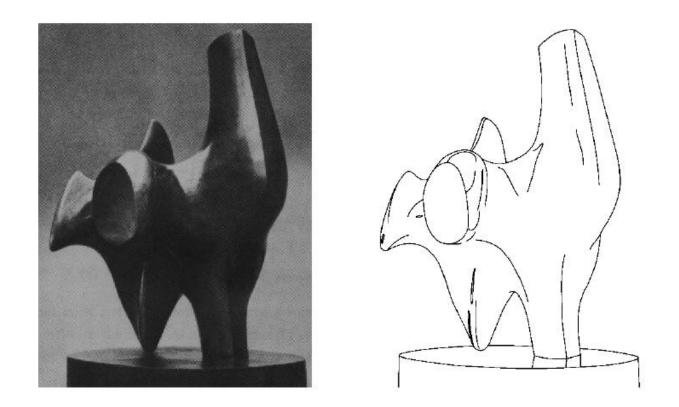
- Extracts salient features of the scene
- More compact than pixels

Origin of Edges



Edges are caused by a variety of factors

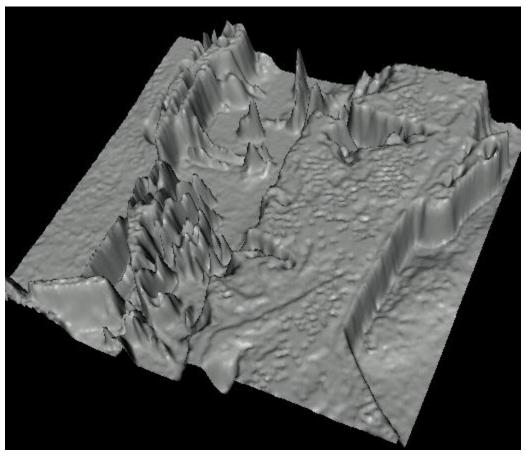
Edge detection



How can you tell that a pixel is on an edge?

snoop demo

Images as functions...



Edges look like steep cliffs

Image gradient

The gradient of an image:

 $\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?
The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The discrete gradient

How can we differentiate a *digital* image F[x,y]?

$$\frac{\partial F}{\partial x} = \lim_{h \to 0} \frac{F(x+h, y) - F(x, y)}{h}$$

The discrete gradient

How can we differentiate a *digital* image F[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a cross-correlation?

0	0	0
1/2	0	-1/2
0	0	0

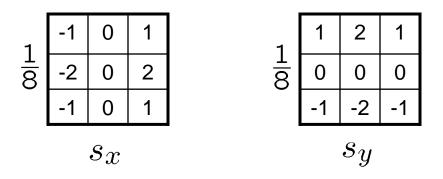
H

filter demo

The Sobel operator

Better approximations of the derivatives exist

• The Sobel operators below are very commonly used

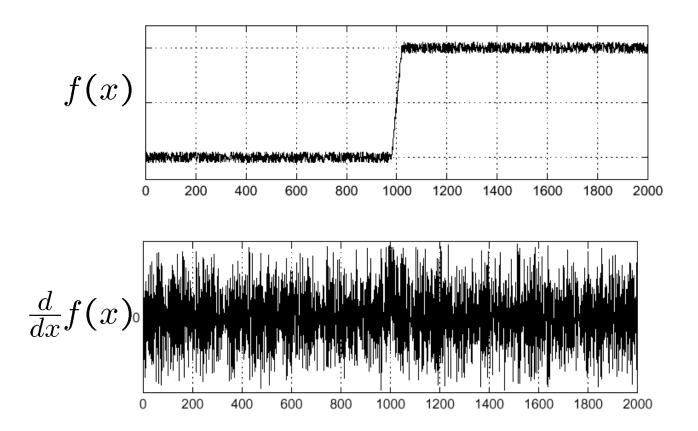


- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

Effects of noise

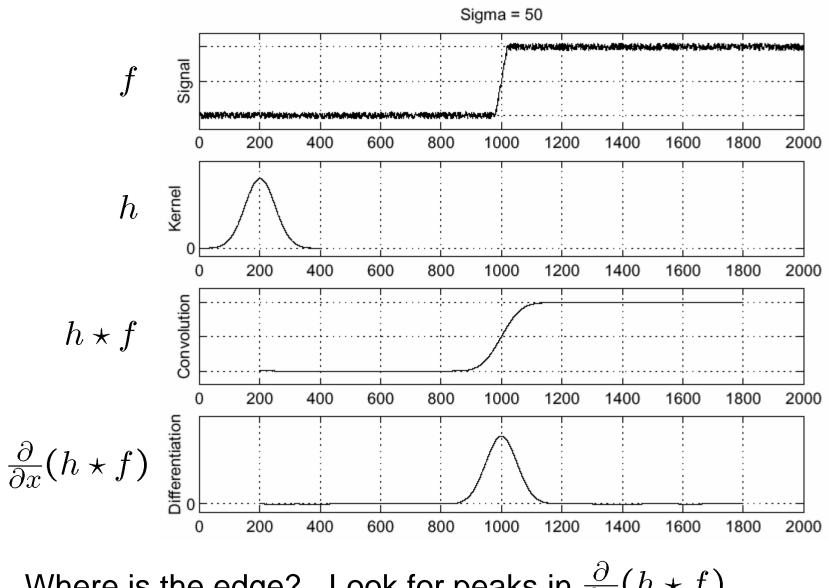
Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal



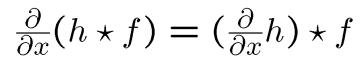
Where is the edge?

Solution: smooth first

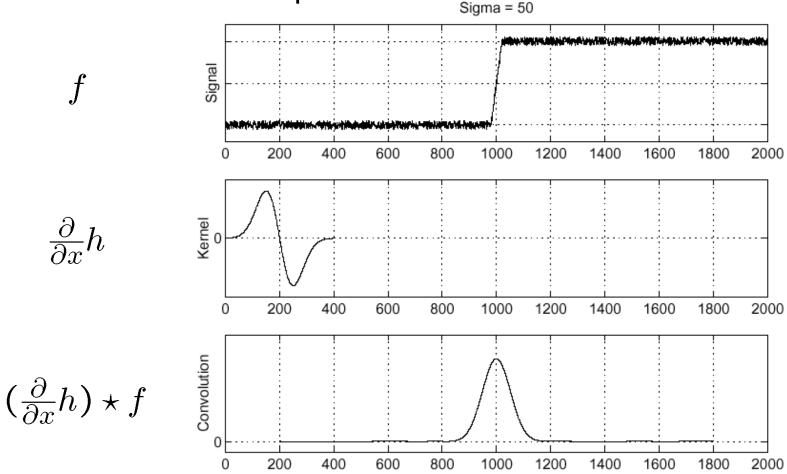


Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

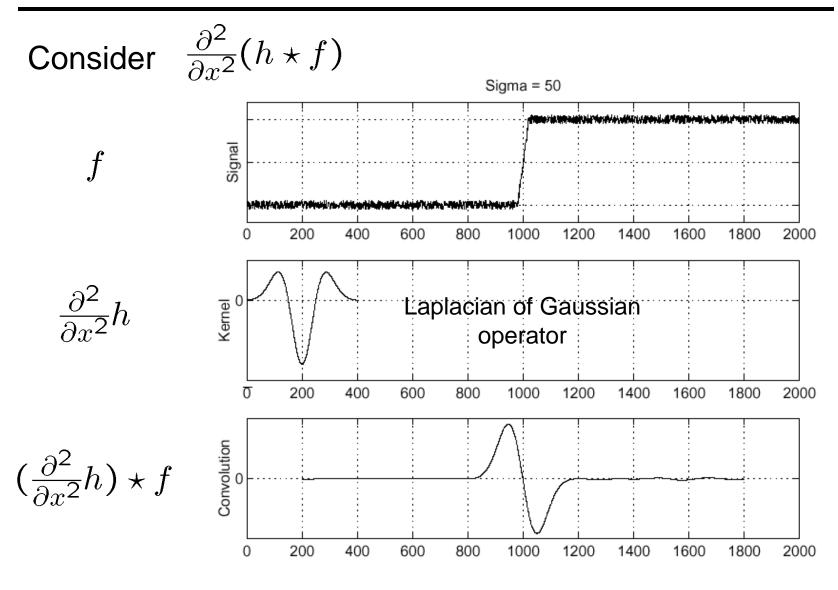


This saves us one operation:



How can we find (local) maxima of a function?

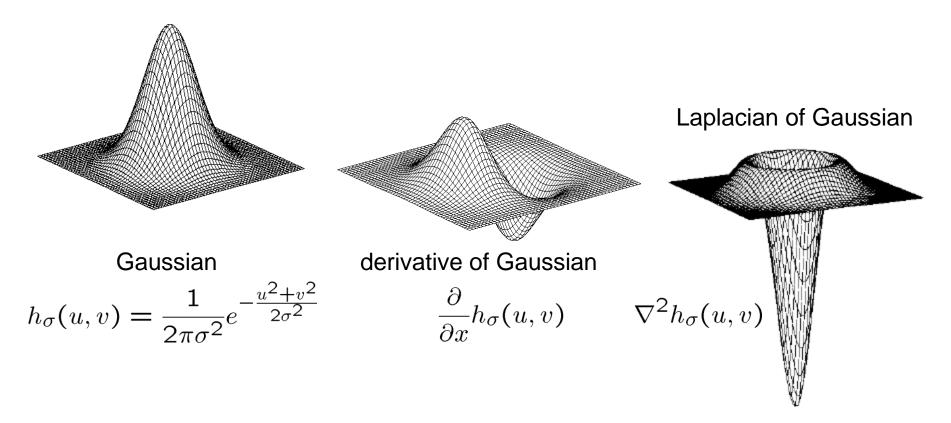
Laplacian of Gaussian



Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters



∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

filter demo

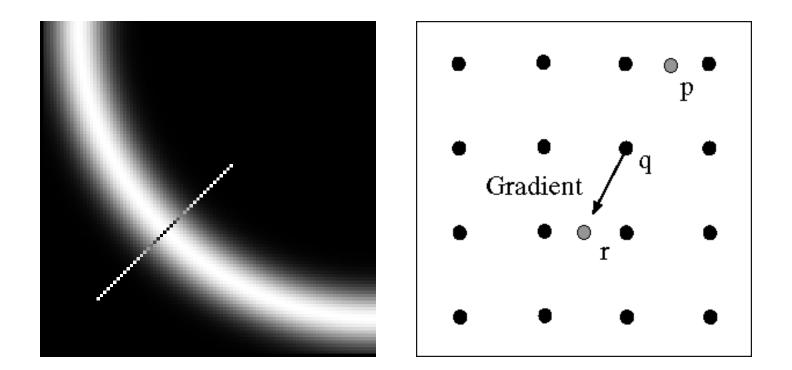
original image (Lena)

norm of the gradient

thresholding

thinning (non-maximum suppression)

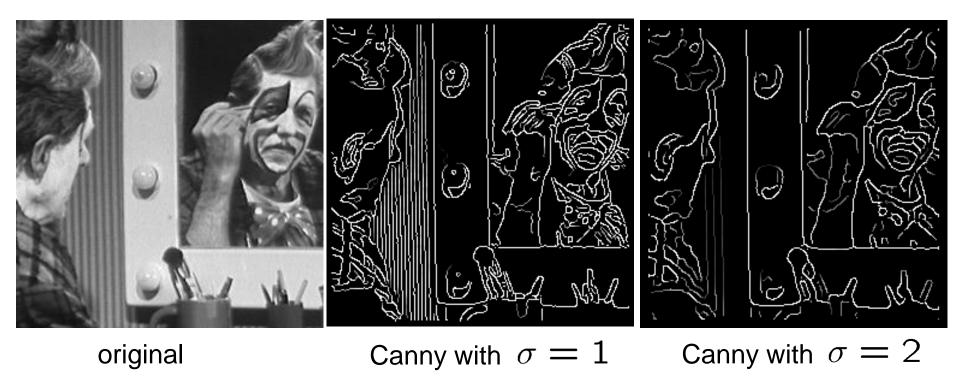
Non-maximum suppression



Check if pixel is local maximum along gradient direction

• requires checking interpolated pixels p and r

Effect of σ (Gaussian kernel spread/size)



The choice of $\sigma\,$ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

smoothed – original (scaled by 4, offset +128)

filter demo

Gaussian - image filter

