

Cameras

CSE 455, Winter 2010
January 25, 2010

Announcements

- New Lecturer!


```
Neel Joshi, Ph.D.
Post-Doctoral Researcher
Microsoft Research
neel@cs
```

- Project 1b (seam carving) was due on Friday the $22^{\text {nd }}$
- Project 2 (eigenfaces) went out on Friday the 22 nd
- to be done individually

Cameras are Everywhere

Camera Trends

First Known Photograph

View from the Window at le Gras, Joseph Nicéphore Niépce 1826

What is an image?

Images as functions

-We can think of an image as a function, f, from R^{2} to R :

- $f(x, y)$ gives the intensity at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$
\text { - } f:[a, b] \times[c, d] \rightarrow[0,1]
$$

-A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

Images as functions

What is a digital image?

- In computer vision we usually operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
-If our samples are Δ apart, we can write this as:
- $f[i, j]=$ Quantize $\{f(i \Delta, j \Delta)\}$
-The image can now be represented as a matrix of integer values

i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Projection

Projection

What is an image?

- 2D pattern of intensity values
- 2D projection of 3D objects

Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

What is an camera?

Image formation

- Let's design a camera
- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura

illum in rabala per radios Solis, quaim in calo contingir: hoc eft,fi in cello fupgrior pars delhquiâ pariarur, in radis apparebit inferiof deficere,vt ratio exigitoptica.

Sic nos exaetì Anno.1944. Lounnii celipfim Solis eb/cruasimus, inuenimuséq deficere paulò plus \bar{q} dex.

- The first camera
- Known to Aristotle
- According to DaVinci "When images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size, in a reversed position, owing to the intersection of the rays".
- How does the aperture size affect the image?

Shrinking the aperture

- Why not make the aperture as small as possible?
- Less light gets through
- Diffraction effects...

Shrinking the aperture

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Lenses

- A lens focuses parallel rays onto a single focal point
- focal point at a distance f beyond the plane of the lens
- f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
- aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Thin lenses

- Thin lens equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- How can we change the focus region?
- Thin lens applet: http://www.phy.ntnu.edu.tw/iava/Lens/lens e.html (by Fu-Kwun Hwang)

Depth of field

$f / 5.6$

f/32

- Changing the aperture size affects depth of field
- A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth of field

Back to Project: Müller-Lyer Illusion

Which line is longer?

http://www.michaelbach.de/ot/sze muelue/index.html

Modeling projection

- The coordinate system
- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- Why?
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

- Projection equations
- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles (on board)

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

- Is this a linear transformation?
- no-division by z is nonlinear

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right) } \\
& \text { divide by third coordinate }
\end{aligned}
$$

- This is known as perspective projection
- The matrix is the projection matrix
- Can also formulate as a 4x4 (today's reading does this)

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
\text { divide by fourth coordinate }
\end{gathered}
$$

Perspective Projection

- How does scaling the projection matrix change the transformation?

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
{\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right]=d \frac{y}{z}\right) .
$$

- Projection matrix is defined "up to a scale"

Geometric properties of perspective projection

- Geometric properties of perspective projection
- Points go to points
- Lines go to lines
- Planes go to whole image or half-plane
- Polygons go to polygons
- Angles \& distances not preserved
- Degenerate cases:
- line through focal point yields point
- plane through focal point yields line

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow(x, y)$
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Other types of projection

- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Changes in Perspective

"Dolly Zoom" Effect (Popularized by Alfred Hitchcock)

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point $\left(x_{c}^{\prime}, y^{\prime}{ }_{c}\right)$, pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{X}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\mathbf{\Pi X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\begin{gathered}
\boldsymbol{\Pi}=\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} c \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\text { intrinsics }
\end{gathered} \underset{\text { projection }}{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]} \underset{\text { rotation }}{\text { translation }}\left[\begin{array}{cc}
\mathbf{T}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

- The definitions of these parameters are not completely standardized
- especially intrinsics - varies from one book to another

Distortion

No distortion

Pin cushion

Barrel

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Distortion

Modeling distortion

Project ($\hat{x}, \hat{y}, \hat{z}$) $\quad x_{n}^{\prime}=\hat{x} / \widehat{z}$
to "normalized"
image coordinates
$y_{n}^{\prime}=\widehat{y} / \widehat{z}$

$$
r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2}
$$

Apply radial distortion

$$
\begin{aligned}
x_{d}^{\prime} & =x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
y_{d}^{\prime} & =y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

Apply focal length translate image center

$$
\begin{aligned}
x^{\prime} & =f x_{d}^{\prime}+x_{c} \\
y^{\prime} & =f y_{d}^{\prime}+y_{c}
\end{aligned}
$$

- To model lens distortion
- Use above projection operation instead of standard projection matrix multiplication

Chromatic Aberration

Rays of different wavelength focus in different planes

Axial chromatic aderration

Magnification chromatio aderration
cannot be removed completely

The image is blurred and appears colored at the fringe.

Vignetting

- Some light misses the lens or is otherwise blocked by parts of the lens

Other types of lenses/cameras

Tilt-shift images from Vincent Laforet
More examples: http://www.smashingmagazine.com/2008/11/16/beautiful-examples-of-tilt-shift-photography/

"Human Camera" (The eye)

- The human eye is a camera
- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

Digital Camera

- A digital camera replaces film with a sensor array
- Each cell in the array is a Charge Coupled Device
- light-sensitive diode that converts photons to electrons
- other variants exist: CMOS is becoming more popular
- http://electronics.howstuffworks.com/digital-camera.htm

How do they work?

- Basic process:
- photons hit a detector
- the detector becomes charged
- the charge is read out as brightness
- Sensor types:
- CCD (charge-coupled device)
- CMOS

Issues with digital cameras

- Noise
- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise
- Compression
- creates artifacts except in uncompressed formats (tiff, raw)
- Color
- color fringing artifacts from Bayer patterns
- Blooming
- charge overflowing into neighboring pixels
- In-camera processing
- oversharpening can produce halos
- Interlaced vs. progressive scan video
- even/odd rows from different exposures
- Are more megapixels better?
- requires higher quality lens
- noise issues

More info online, e.g.,
http://electronics.howstuffworks.com/digitalcamera.htm
http://www.dpreview.com/

