Automating Tactile Graphics Translation
 Computer Vision CSE 455 2010

Richard Ladner
University of Washington

Blind Scientists and Engineers

Kent Cullers, Ph.D. Physics

Cary Supalo Grad Student Chemistry

Geerat Vermeij, Ph.D. Evolutionary Biologist

Blind Scientists and Engineers

Bill Gerrey
Electrical Engineering Inventor

Imke Durre, Ph.D.
Atmospheric Science

William Skawinski
Professor, Chemistry

Blind Scientists and Engineers

H. David Wohlers Professor, Chemistry

TV Raman
Computer Science Google

Victor Wong EE Grad Student

Blind Scientists and Engineers

Chieko Asakawa Computer Scientist IBM

Hideji Nagaoka Computer Scientist Tsukuba U. of Tech

Katsuhito Yamaguchi Physics
Nihon University

The Problem

Write an Profit equals income less costs. The profit from crop A expression. equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop
B equals $520 y-200 y-10(5.00) y$, or $270 y$. Thus, the profit equals 520 , $200 y$ (5.00) y, or 270 y . Thus, the profit
function is $P(X, y)=396 X+270 V$,
$P(0,0)=396(0)+270(0)=0$
$P(15,0)=396(15)+270(0)=5940$
$P(15,5)=396(15)+270(5)=7290$
$P(0,20)=396(0)+270(20)=5400$
math

The maximum occurs at $(15,5)$. Thus, Mr. Washington should plant 15 acres of crop A and 5 acres of crop B to obtain the maximum profit of $\$ 7290$.

In certain circumstances, the use of linear programming is not helpful. Consider the graph at the right, based on the following constraints.
$x \geq 0$
$y>0$
$y \geq 0$
$y \geq 6$
$4 x+3 y \leq 12$

text
The constraints do not define a region with any points in common in Quadrant I. When the constraints of a linear programming problem cannot be satisfied
simultaneously, then infeasibility is said to occur. This may mean that the simultaneously, then infeasibility is said to occur. This may mean that the
constraints have been formulated incorrectly, certain requirements need to be changed, or that additional resources are required before the problem can be solved.

Outline

- Tactual Perception
- Text
- Math
- Graphics
- Problems
- Thanks
- Demo

Tactile Perception

- Resolution of human fingertip: 25 dpi
- Tactual field of perception is no bigger than the size of the fingertips of two hands
- Color information is replaced by texture information
- Visual bandwidth is $1,000,000$ bits per second, tactile is 100 bits per second

Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

Critical fact:

0	0					
0	0	0	0			
0	0	0	0			
0	0	0	0	0	0	0
0	0					

Fixed height and width

Tiger Embosser

- 20 dpi (raised dots per inch)
- 7 height levels (only 3 or 4 are distinguishable)
- Prints Braille text and graphics
- Prints dot patterns for texture
- Invented by a blind man, John Gardner

Outline

- Tactual Perception
- Text
- Math
- Graphics
- Problems
- Thanks
- Demo

Text

Let's use this procedure to solve the application presented at the beginning of the lesson.

Define Let $x=$ the number of acres of crop A.
Let $x=$ the number of y crop A.
$x \geq 0, y \geq 0$ Acreage connet helese
$\begin{array}{lll}\text { inequalities. } & x \leq 15 & \text { No more than } 15 \text { acres of crop } A \text { are permitted } \\ & x+y \leq 20 \\ & \text { No more than } 20 \text { acres can be planted in all. }\end{array}$
Graph the $A y$ The constraints $x \geq 0$ and $y \geq 0$
ystem.

The vertices are at $(0,0),(15,0),(15,5)$, and $(0,20)$,
Write an Profit equals income less costs. The profit from crop A
expression. equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop
B equals $520 y-200 y-10(5.00) y$, or $270 y$. Thus, the profit function is $P(x, y)=396 x+270 y$.

Substitute $\quad P(0,0)=396(0)+270(0)=0$
values. $\quad P(15,0)=396(15)+270(0)=5940$
$P(15,5)=396(15)+270(5)=7290$
$P(0,20)=396(0)+270(20)=5400$
Answer The maximum occurs at (15,5). Thus, Mr. Washington should plant 15 acres of crop A and 5 acres of crop B to obtain the maximum profit of $\$ 7290$.

In certain circumstances, the use of linear programming is not helpful. Consider the graph at the right, based on the following constraints.
$x \geq 0$
$y \geq 0$
$y \geq 6$
$4 x+3 y \leq 12$

The constraints do not define a region with any points in common in Quadrant When the constraints of a linear programming problem cannot be satisfied simultaneously, then infeasibility is said to occur. This may mean that the constraints have been formulated incorrectly, certain requirements need to be
changed, or that additional resources are required before the problem can be solved.

Text Translation

The constraints do not define a region with any points in common in Quadrant

Text Image I. When the constraints of a linear programming problem cannot be satisfied simultaneously, then infeasibility is said to occur. This may mean that the constraints have been formulated incorrectly, certain requirements need to be changed, or that additional resources are required before the problem can be solved.

Optical Character Recognition (OCR)

The constraints do not define a region with any points in common in Quadrant simultaneously, then infeasibility is said to occur. This may mean that the constraints have been formulated incorrectly, certain requirements need to be changed, or that additional resources are required before the problem can be solved.

Braille

Speech Synthesis (Jaws) $\}$

Braille Translation (Duxbury)

Outline

- Tactual Perception
- Text
- Math
- Graphics
- Problems
- Thanks
- Demo

Math

Let's use this procedure to solve the application presented at the beginning of the lesson.

Defin
Let $x=$ the number of acres of $\operatorname{crop} A$.
variables. Let $y=$ the number of acres of crop B.
Write
$x+y \leq 20 \quad$ No more than 20 acres can be planted in all
Graph the $4 y, 4$ The constraints $x \geq 0$ and $y \geq 0$ ystem.

The vertices are at $(0,0),(15,0),(15,5)$, and $(0,20)$
Write an Profit equals income less costs. The profit from crop A
expression. equals $600 \mathrm{x}-120 \mathrm{x}-15(5.60) x$, or 396 x . The profit from crop equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop
B equals $520 y-200 y-10(5.00) y$, or $270 y$. Thus, the profit B equals $520 y-200 y-10(5.00)$,

$$
\begin{aligned}
& P(0,0)=396(0)+270(0)=0 \\
& P(15,0)=396(15)+270(0)=5940 \\
& P(15,5)=396(15)+270(5)=7290
\end{aligned}
$$

$$
P(0,20)=396(0)+270(20)=5400
$$

Answer
The maximum occurs at $(15,5)$. Thus, Mr. Washington should plant 15 acres of crop A and 5 acres of crop B to obtain the maximum profit of $\$ 7290$

In certain circumstances, the use of linear programming is not helpful. Consider the graph at the right, based on the following constraints.
$x \geq 0$
$y \geq 0$
$4 x+3 y \leq 12$

The constraints do not define a region with any points in common in Quadrant
The constraints do not define a region with any points in common in Quadrant L. When the constraints of a linear programming problem cannot be satisfied simultaneously, then infeasibility is said to occur. This may mean that the
constraints have been formulated incorrectly, certain requirements need to be changed, or that additional resources are required before the problem can be solved.

Math Translation

Math Image

$$
\begin{aligned}
& P(0,0)=396(0)+270(0)=0 \\
& P(15,0)=396(15)+270(0)=5940 \\
& P(15,5)=396(15)+270(5)=7290 \\
& P(0,20)=396(0)+270(20)=5400
\end{aligned}
$$

\backslash begin $\{$ eqnarray* $\}$ $P(0,0)=396(0)+270(0)=0 \backslash \backslash$
Latex

Math Translation Examples

$$
\begin{gathered}
\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} \\
\{
\end{gathered}
$$

$$
\backslash \operatorname{sum} _\{i=0\} \wedge \text { infty } x^{\wedge} i=\backslash \operatorname{frac}\{1\}\{1-x\}
$$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\backslash frac $\left\{-b \backslash p m \backslash \operatorname{sqrt}\left\{b^{\wedge} 2-4 a c\right\}\right\}\{2 a\}$

Outline

- Tactual Perception
- Text
- Math
- Graphics
- Problems
- Thanks
- Demo

Graphics

Let's use this procedure to solve the application presented at the beginning of the lesson.

Define Let $x=$ the number of acres of $\operatorname{crop} A$.
yariables. Let $y=$ the number of acres of $\operatorname{crop} B$.
Write $\quad x \geq 0, y \geq 0$ Acreage cannot be less than 0 .
nequalities. $x<15$ No more than 15 acres of crop A are permitted.
Graph the

The constraints $x \geq 0$ and $y \geq 0$
tell you to consider only those points that are in Quadrant
ystem.

The vertices are at $(0,0),(15,0),(15,5)$, and $(0,20)$.
Write an Profit equals income less costs. The profit from crop A
expression. equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop equals $600 x-120 x-15(5.60) x$, or $396 x$. The profit from crop
B equals $520 y-200 y-10(5.00) y$, or $270 y$. Thus, the profit function is $P(x, y)=396 x+270 y$.

Substitute $\quad P(0,0)=396(0)+270(0)=0$
values. $\quad P(15,0)=396(15)+270(0)=5940$
$P(15,5)=396(15)+270(5)=7290$
$P(0,20)=396(0)+270(20)=5400$
Answer The maximum occurs at $(15,5)$. Thus, Mr. Washington should plant 15 acres of crop A and 5 acres of crop B to obtain the maximum profit of $\$ 7290$.

In certain circumstances, the use of linear programming is not helpful. Consider the graph at the right, based on the following constraints.
$x \geq 0$
$y \geq 0$
$x \geq 0$
$y \geq 6$
$4 x+3 y \leq 12$

The constraints do not define a region with any points in common in Quadrant
I. When the constraints of a linear programming problem cannot be satisfied When the constraints of a linear programming problem cannot be satisfied simultaneously, then infeasibility is said to occur. This may mean that the changed, or that additional resources are required before the problem can be solved.

Graphic Translation

Graphic Translation

Finding Text

- Why not just use standard optical character recognition (OCR)?
- OCR is not effective for graphical images.

ABBYY FineReader 7.0
Professional Edition

More OCR

© 2003 Elsevier Science (USA). All rights reserved.

Find Text Letters

- Uses the following principles
- Text in an image is usually in one font
- Fonts are designed to have a uniform density at a distance.
- In the absence of noise an individual letter tends to be connected component of one color. Exceptions are i and j .
- Use machine learning to determine which connected components are letters.

Features

Century Gothic

$\mathrm{W}=$ width of bounding box
$\mathrm{H}=$ height of bounding box
$\mathrm{A}=$ area of bounding box
$R_{i}=i$-th radial slice density

$\mathrm{R}_{\mathrm{i}}=$ number of black pixels in i-th slice where a slice is an angle of $360 / \mathrm{n}$. The total number

Center is center of mass of black pixels

Machine Learning

- Training:
- Sample the connected components and compute their features.
- Use these features to train a Support Vector Machine (SVM).
- Finding:
- For a new connected component compute its features.
- Feed these features into the SVM.

Example

© 2003 Elsevier Science (USA). All rights reserved.
Trained on a different images from the same book.
Trophict About 200 letters in the training set.

Find Text Blocks

Group characters logically

- Extracting a set of isolated characters from an image is insufficient
- Need groups of Braille characters for easier placement
- Challenges
- Text can be at many angles
- Individual characters may be aligned along multiple axes

Our approach

- Step 1: User provides training set
- Software examines defining features
- Step 2: Automatically find similar groups in remaining images
A. Minimum spanning tree
B. Discard useless edges
C. Discard inconsistent edges
D. Create merged groups

Minimum spanning tree (1)

Treat the centroid of each connected component as a node

Discard useless edges (2)

gactich

Discard inconsistent edges (3)

Final merge step (4)

Merge only if the resultant group is consistent

OCR on Text Image

Image of text boxes
14.0 14.0
12.0
10.0 10.0
8.0
6.0
4.0
2.0

0
Performance relative to AMD
Elan SC520
Automotive
Office
Telecomm
© 2003 Elsevier Science (USA). All rights reserved.
AMD ElanSC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122
12.0
8.0
6.0
4.0

Text
2.0

0
Performance
relative to AMD
Elan SC520
Automotive
Office
Telecomm
© 2003 Elsevier Science (USA). All rights reserved.
AMD ElanSC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

Braille Placement

- Text boxes of Braille will be of different size than the original text boxes
- Mode characters
- Contractions
- Braille is fixed width

Left justified

Right justified

Example

Centered

Example Plane Sweep

Example Plane Sweep

Example Plane Sweep

Example Plane Sweep

Available Books

- Computer Architecture: A Quantitative Approach, 3 rd Edition
25 minutes per figure (230 figures)
- Advanced Mathematical Concepts, Precalculus with Applications 6.3 minutes per figure (1,080 figures)
- An Intoduction to Modern Astrophysics 10.2 minutes per figure (467 figures)
- Discrete Mathematical Structures 8.8 minutes per figure (598 figures)
- Introduction to the Theory of Computation, $2^{\text {nd }}$ Edition 13.3 minutes per figure (180 figures)

Work Balance

TGA Workflow

- Advantages
- Much faster production
- Batch processing instead of one figure at a time
- Much tedious work is avoided
- Disadvantages
- May be of lower quality than custom translation
- A lot of technology needs to be mastered

One-offs vs. Mass Production

1906 Reo

Model T

Outline

- Text
 - Math

- Graphics
- Norkflow
- Problems
- Thanks
- Demo

Problem solving

- Each book present a set of unique problems.
- We consider a few today
- Classification of figures
- Legends and colors
- Text at an angle
- Math in figures
- Grids

Classes

Legends and Colors

- Legends may have to be enlarged.
- Colors may have to be replaced with textures.

© 2003 Elsevier Science (USA). All rights reserved.

Angled Text

- Braille should be printed horizontally.

Math - Infty Reader

$$
\longrightarrow\left[\begin{array}{l}
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 \\
y=k \\
y \\
x \\
(h, k) \\
0 \\
x=h
\end{array}\right.
$$

Extracted Math Image

Grids

- Grids may not work well in tactile form.

TGA Technology

- Tactile Graphic Assistant
- C++
- Machine Learning (Support Vector Machine)
- Learns features of text from positive and negative examples.
- Computational Geometry
- Text justification
- Free executable
- Licensable source code

New Direction: Digital Pen Tactile Graphic

Digital Pen

Technology of the Future

- Electro-rheological fluid displays

Outline

- Text
 - Math

- Graphics
- Workflow
- Droblams
- Thanks
- Demo

CSE Undergraduate Students

Current Undergraduate Student

Josh Scotland

CSE Graduate Students

Sahngyun Hahn

Chandrika Jayant

Thanks To

- Dan Comden
- Sheryl Burgstahler
- Raj Rao
- Melody Ivory
- Ethan Katz-Basset
- Zach Lattin
- Stuart Olsen
- Many others

Thanks To

Washington Research
FOUNDATION

A
Adobe

Royalty Research Fund

DEMO

, צapoliay

