Region Segmentation Readings: Chapter 10: 10.1 Additional Materials Provided

- K-means Clustering (text)
- EM Clustering (paper)
- Graph Partitioning (text)
- Mean-Shift Clustering (paper)

Image Segmentation

Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels.

- 1. into regions, which usually cover the image
- 2. into linear structures, such as
 - line segments
 - curve segments
- 3. into 2D shapes, such as
 - circles
 - ellipses
 - ribbons (long, symmetric regions)

Example: Regions



Main Methods of Region Segmentation

3. Clustering

Clustering

- There are K clusters C_1, \ldots, C_K with means m_1, \ldots, m_K .
- The least-squares error is defined as

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - m_k||^2.$$

• Out of all possible partitions into K clusters, choose the one that minimizes D.

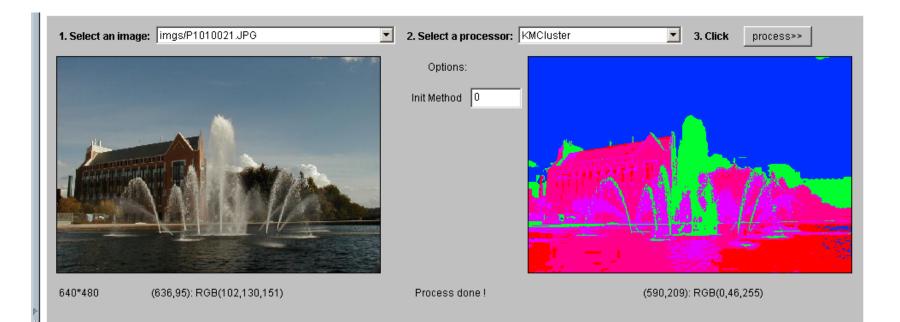
Why don't we just do this? If we could, would we get meaningful objects?

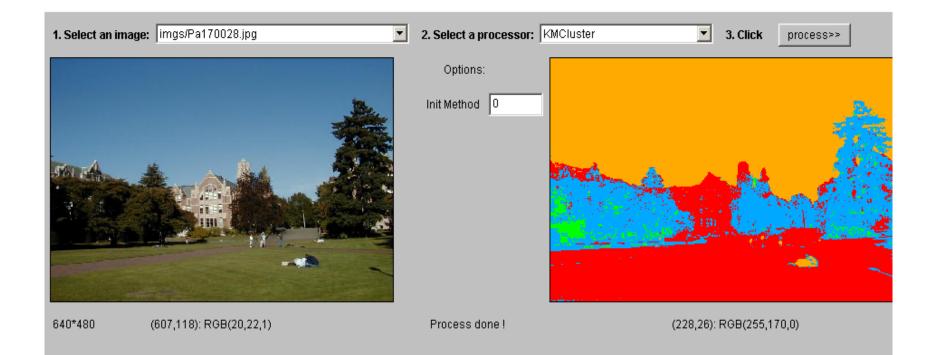
K-Means Clustering

Form K-means clusters from a set of n-dimensional vectors

- 1. Set ic (iteration count) to 1
- 2. Choose randomly a set of K means $m_1(1)$, ..., $m_K(1)$.
- 3. For each vector x_i compute $D(x_i, m_k(ic)), k=1,...K$ and assign x_i to the cluster C_j with nearest mean.
- 4. Increment ic by 1, update the means to get $m_1(ic),...,m_K(ic)$.

5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.





K-means Variants

- Different ways to initialize the means
- Different stopping criteria
- Dynamic methods for determining the right number of clusters (K) for a given image

• The EM Algorithm: a probabilistic formulation of K-means

K-Means

- Boot Step:
 - Initialize K clusters: $C_1, ..., C_K$

Each cluster is represented by its mean m_i

• Iteration Step:

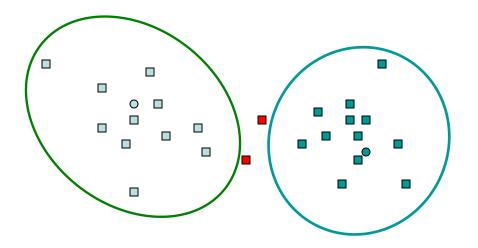
- Estimate the cluster for each data point

$$x_i \implies C(x_i)$$

– Re-estimate the cluster parameters

$$m_j = mean\{x_i \mid x_i \in C_j\}$$

Where do the red points belong?



K-means vs. EM

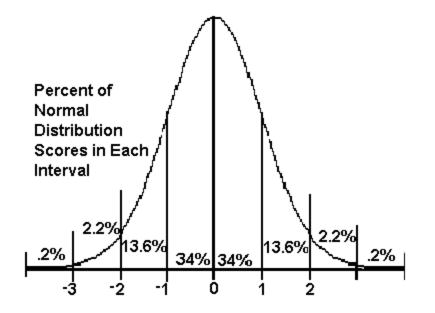
K-means

ΕM

Cluster Representation	mean	mean, variance, and weight
Cluster Initialization	randomly select K means	initialize K Gaussian distributions
Expectation	assign each point to closest mean	soft-assign each point to each distribution
Maximization	compute means of current clusters	compute new params of each distribution

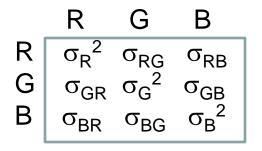
Notation

 $N(\mu, \sigma)$ is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .



$N(\mu, \Sigma)$ is a multivariate Gaussian distribution with mean μ and covariance matrix Σ .

What is a covariance matrix?



variance(X): $\sigma_X^2 = \sum (x_i - \mu)^2 (1/N)$

$$cov(X,Y) = \sum (x_i - \mu_x)(y_i - \mu_y) (1/N)$$

1. Suppose we have a set of clusters: $C_1, C_2, ..., C_K$ over a set of data points $X = \{x_1, x_2, ..., x_N\}$.

 $P(C_i)$ is the probability or weight of cluster C_i .

 $P(C_i | x_i)$ is the probability of cluster C_i given point xi.

 $P(x_i | C_j)$ is the probability of point x_i belonging to cluster C_j .

2. Suppose that a cluster C_j is represented by a Gaussian distribution $N(\mu_j, \sigma_j)$. Then for any point x_i :

$$P(x_{i} | C_{j}) = \frac{1}{\sqrt{2\pi} \sigma_{j}} e^{-\frac{(x_{i} - \mu_{j})^{2}}{2\sigma_{j}^{2}}}$$

17

EM: Expectation-Maximization

Boot Step:

- Initialize K clusters: C_l , ..., C_K

 (μ_{j}, Σ_{j}) and $P(C_{j})$ for each cluster *j*.

• Iteration Step:

- Estimate the cluster of each data point $p(C_j | x_i)$

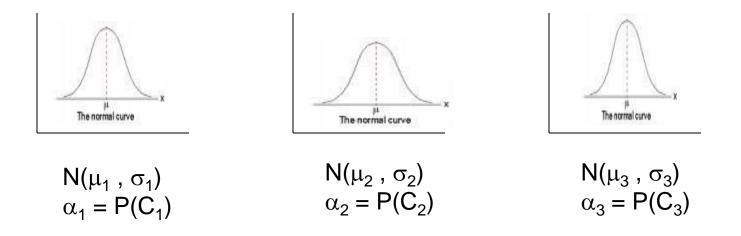
Maximization

– Re-estimate the cluster parameters

 $(\mu_j, \Sigma_j), p(C_j)$ For each cluster j

1-D EM with Gaussian Distributions

- Each cluster C_j is represented by a Gaussian distribution $N(\mu_i, \sigma_i)$.
- Initialization: For each cluster C_j initialize its mean μ_j , variance σ_j^2 , and weight α_j .



Expectation

- For each point x_i and each cluster C_j compute P(C_j | x_i).
- $P(C_j | x_i) = P(x_i | C_j) P(C_j) / P(x_i)$
- $P(x_i) = \sum_{i} P(x_i | C_i) P(C_i)$
- Where do we get $P(x_i | C_i)$ and $P(C_i)$?

1. Use the pdf for a normal distribution:

$$P(x_{i} | C_{j}) = \frac{1}{\sqrt{2\pi}\sigma_{j}} e^{-\frac{(x_{i} - \mu_{j})^{2}}{2\sigma_{j}^{2}}}$$

2. Use $\alpha_j = P(C_j)$ from the current parameters of cluster C_j .

Maximization

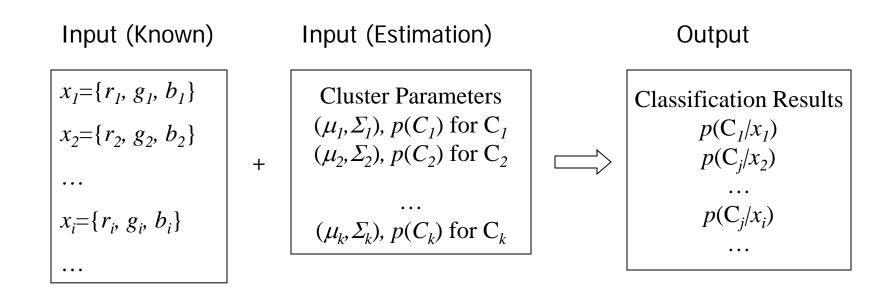
• Having computed $P(C_j | x_i)$ for each point x_i and each cluster C_j , use them to compute new mean, variance, and weight for each cluster.

$$\mu_j = \frac{\sum_i p(C_j \mid x_i) \cdot x_i}{\sum_i p(C_j \mid x_i)}$$

$$\sigma_j^2 = \sum_j = \frac{\sum_i p(C_j \mid x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j \mid x_i)}$$

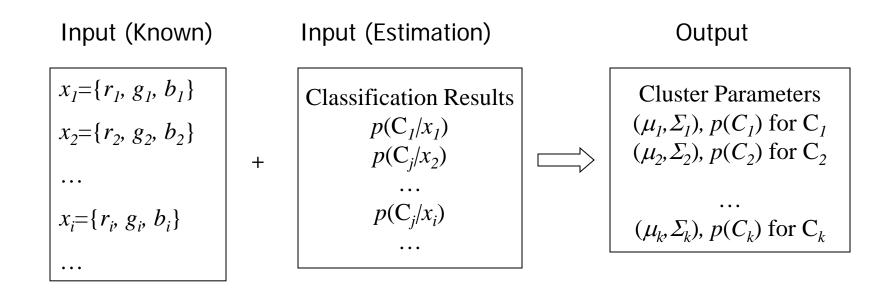
$$p(C_j) = \frac{\sum_i p(C_j \mid x_i)}{N}$$

Multi-Dimensional Expectation Step for Color Image Segmentation



$$p(C_{j} | x_{i}) = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{p(x_{i})} = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{\sum_{j} p(x_{i} | C_{j}) \cdot p(C_{j})}$$

Multi-dimensional Maximization Step for Color Image Segmentation



$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \quad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \quad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

24

Full EM Algorithm Multi-Dimensional

• Boot Step:

- Initialize K clusters: $C_1, ..., C_K$

 (μ_{j}, Σ_{j}) and $P(C_{j})$ for each cluster *j*.

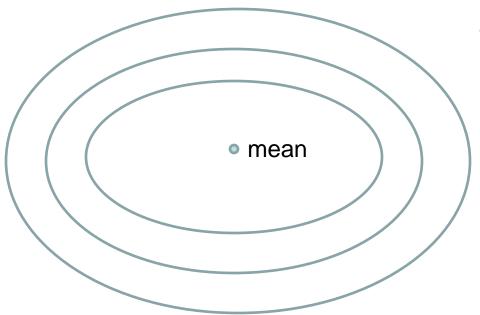
- <u>Iteration Step</u>:
 - Expectation Step

$$p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_j p(x_i | C_j) \cdot p(C_j)}$$

Maximization Step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$
25

Visualizing EM Clusters



ellipses show one, two, and three standard deviations

EM Demo

• <u>Demo</u>

http://www.neurosci.aist.go.jp/~akaho/MixtureEM.html

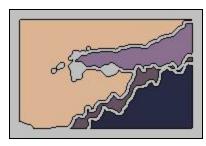
• Example

http://www-2.cs.cmu.edu/~awm/tutorials/gmm13.pdf

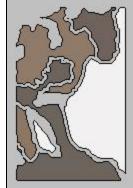
EM Applications

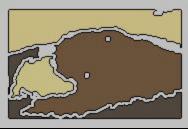
- Blobworld: Image segmentation using Expectation-Maximization and its application to image querying
- Yi's Generative/Discriminative Learning of object classes in color images

Blobworld: Sample Results



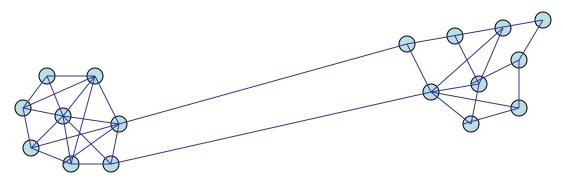






Jianbo Shi's Graph-Partitioning

- An image is represented by a graph whose nodes are pixels or small groups of pixels.
- The goal is to partition the vertices into disjoint sets so that the similarity within each set is high and across different sets is low.

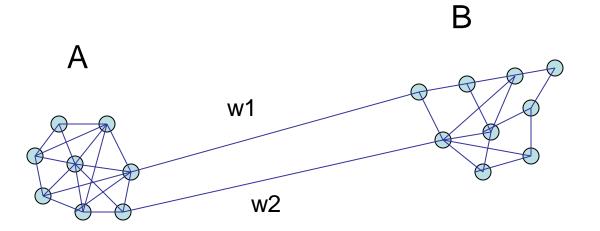


Minimal Cuts

- Let G = (V,E) be a graph. Each edge (u,v) has a weight w(u,v) that represents the similarity between u and v.
- Graph G can be broken into 2 disjoint graphs with node sets A and B by removing edges that connect these sets.
- Let $cut(A,B) = \sum_{u \in A, v \in B} w(u,v)$.
- One way to segment G is to find the minimal cut.

Cut(A,B)

$$\operatorname{cut}(A,B) = \sum_{u \in A, v \in B} w(u,v)$$



32

Normalized Cut

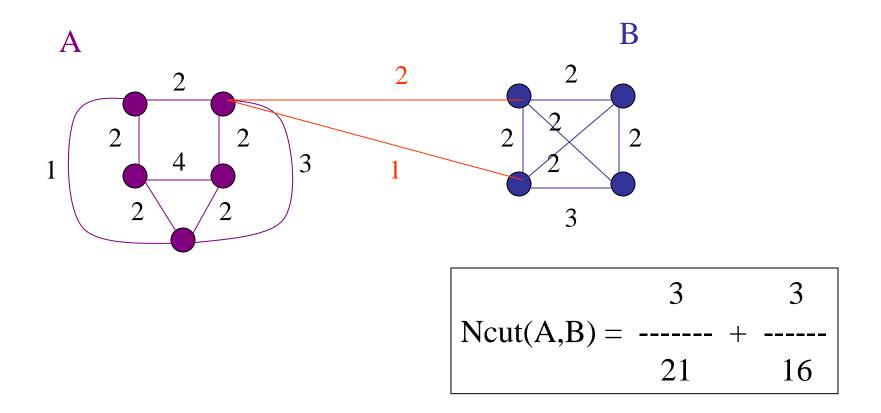
Minimal cut favors cutting off small node groups, so Shi proposed the **normalized cut.**

$$Ncut(A,B) = \begin{array}{c} cut(A,B) & cut(A,B) \\ ----- & + & ----- \\ asso(A,V) & asso(B,V) \end{array}$$
normalized cut

$$asso(A,V) = \sum_{u \in A, t \in V} w(u,t)$$

How much is A connected to the graph as a whole.

Example Normalized Cut



Shi turned graph cuts into an eigenvector/eigenvalue problem.

- Set up a weighted graph G=(V,E)
 V is the set of (N) pixels
 - E is a set of weighted edges (weight w_{ij} gives the similarity between nodes i and j)
 - Length N vector d: d_i is the sum of the weights from node i to all other nodes
 - N x N matrix D: D is a diagonal matrix with d on its diagonal
 - N x N symmetric matrix W: $W_{ij} = W_{ij}$

• Let x be a characteristic vector of a set A of nodes

$$-x_i = 1$$
 if node i is in a set A

- $x_i = -1$ otherwise
- Let y be a continuous approximation to x

$$y = (1+x) - \frac{\sum_{x_i > 0} d_i}{\sum_{x_i < 0} d_i} (1-x).$$

• Solve the system of equations

 $(\mathsf{D} - \mathsf{W}) \ \mathsf{y} = \lambda \ \mathsf{D} \ \mathsf{y}$

for the eigenvectors y and eigenvalues λ

- Use the eigenvector y with second smallest eigenvalue to bipartition the graph (y => x => A)
- If further subdivision is merited, repeat recursively

How Shi used the procedure

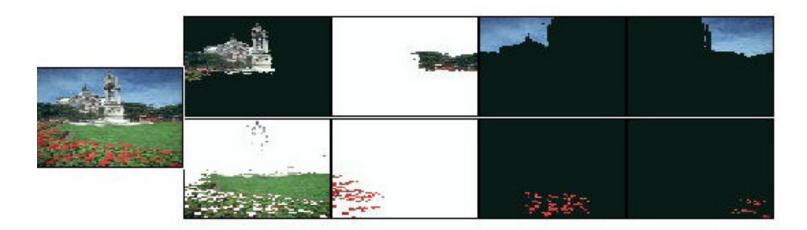
Shi defined the edge weights w(i,j) by

$$w(i,j) = e^{-||F(i)-F(j)||_2 / \sigma I} * \begin{cases} e^{-||X(i)-X(j)||_2 / \sigma X} & \text{if } ||X(i)-X(j)||_2 < r \\ 0 & \text{otherwise} \end{cases}$$

where X(i) is the spatial location of node i F(i) is the feature vector for node I which can be intensity, color, texture, motion...

The formula is set up so that w(i,j) is 0 for nodes that are too far apart.

Examples of Shi Clustering See Shi's Web Page http://www.cis.upenn.edu/~jshi/



Problems with Graph Cuts

- Need to know when to stop
- Very Sloooow

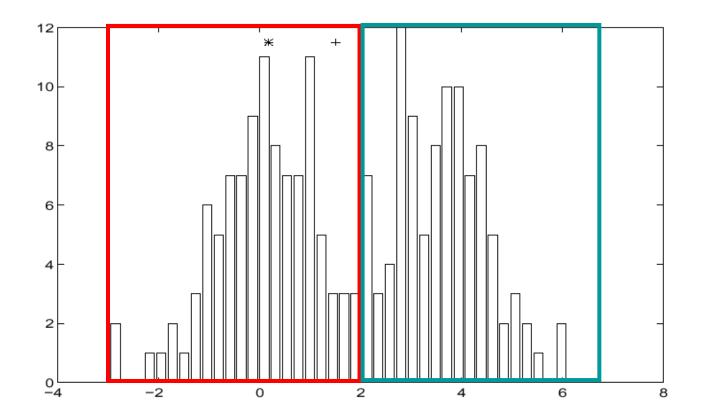
Problems with EM

- Local minima
- Need to know number of segments
- Need to choose generative model

Mean-Shift Clustering

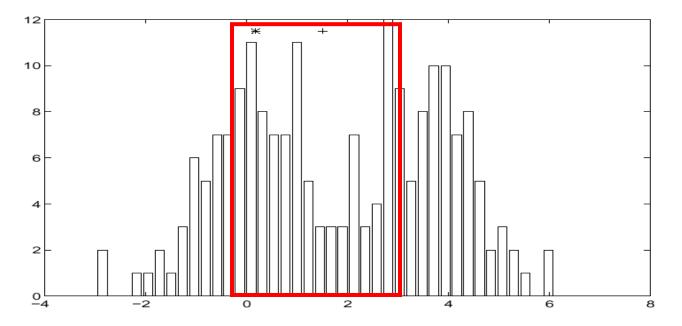
- Simple, like K-means
- But you don't have to select K
- Statistical method
- Guaranteed to converge to a fixed number of clusters.

Finding Modes in a Histogram



How Many Modes Are There?
 – Easy to see, hard to compute

Mean Shift [Comaniciu & Meer]



Iterative Mode Search

- 1. Initialize random seed, and window W
- 2. Calculate center of gravity (the "mean") of W: $\sum_{x \in W}$
- 3. Translate the search window to the mean
- 4. Repeat Step 2 until convergence

xH(x)

Numeric Example Must Use Normalized Histogram!

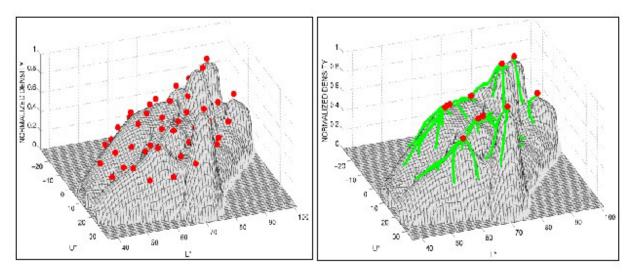
window W centered at 12 mean shift mean shift 10 11 12 13 14 H(x) 5 4 3 2 1 N(x) 5/15 4/15 3/15 2/15 1/15

$$\sum X N(x) = 10(5/15) + 11(4/15) + 12(3/15) + 13(2/15) + 14(1/15)$$

= 11.33

Mean Shift Approach

- Initialize a window around each point
- See where it shifts—this determines which segment it's in
- Multiple points will shift to the same segment



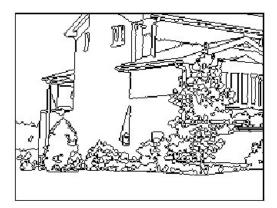
Mean shift trajectories

Segmentation Algorithm

- First run the mean shift procedure for each data point x and store its convergence point z.
- Link together all the z's that are closer than .5 from each other to form clusters
- Assign each point to its cluster
- Eliminate small regions

Mean-shift for image segmentation

- Useful to take into account spatial information
 - instead of (R, G, B), run in (R, G, B, x, y) space



References

- Shi and Malik, "<u>Normalized Cuts and Image</u> <u>Segmentation</u>," Proc. CVPR 1997.
- Carson, Belongie, Greenspan and Malik, "<u>Blobworld:</u> <u>Image Segmentation Using Expectation-Maximization</u> <u>and its Application to Image Querying</u>," IEEE PAMI, Vol 24, No. 8, Aug. 2002.
- Comaniciu and Meer, "<u>Mean shift analysis and</u> <u>applications</u>," Proc. *ICCV* 1999.