Motion Estimation
Readings: Ch 9: 9.1-9.3 plus papers

 change detection

o optical flow analysis

* Lucas-Kanade method with pyramid structure
e Ming Ye’s improved method



Why estimate motion?

We live in a 4-D world

Wide applications
e Object Tracking
e Camera Stabilization
* Image Mosaics

« 3D Shape Reconstruction
(SFM)

« Special Effects (Match
Move)




Frame from an ARDA Sample Video




Change detection for surveillance

 Video frames: F1, F2, F3, ...
» Objects appear, move, disappear
» Background pixels remain the same (simple case)
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 How do you detect the moving objects?

« Simple answer: pixelwise subtraction



Example: Person detected entering room

* Pixel changes detected as difference components

» Regions are (1) person, (2) opened door, and (3) computer
monitor.

 System can know about the door and monitor. Only the
person region is “unexpected”.



Change Detection via Image Subtraction

for each pixel [r,c]
It (|11[r,c] - 12[r,c]| > threshold) then lout[r,c] = 1 else lout[r,c] =0

Perform connected components on lout.
Remove small regions.
Perform a closing with a small disk for merging close neighbors.

Compute and return the bounding boxes B of each remaining region.

What assumption does this make about the changes?




Change analysis

Known regions are ignored and system attends to the
unexpected region of change. Region has bounding
box similar to that of a person. System might then
zoom in on “head” area and attempt face recognition.
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Problem definition: optical flow

./ Q °

N o
o—r i (@) .
H(x,y) I(z,y)

How to estimate pixel motion from image H to image 1?

» Solve pixel correspondence problem
— given a pixel in H, look for[nearby|pixels of the|same colof in |

Key assumptions

e color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy

* small motion: points do not move very far
This Is called the optical flow problem



Optical flow constraints (grayscale images)

(2, 9)
\Sllsplacement = (u,v)

@]
(z 4+ u,y + v)

H(z,y) I(z,y)

Let’s look at these constraints more closely
* brightness constancy: Q: what’s the equation?

H(X, y) = I(X+u, y+V)
« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(x+u,y+v) = I(x, y)—l—ﬂ 8lv—l—h|gher order terms
~ I(z,y) —|— —|— 10



Optical flow equation

Combining these two equations

shorthand: I, = 9L
O=I(a;‘—|—’u,,y—|—v)—H(:c,y) v oz

The x-component of
~ I(z,y) + Izu+ Iyv — H(x,y) the gradient vector.

~ It + Ipu + Iyv
~ It + VI [u v]

Whatis I, ? The time derivative of the image at (X,y)

How do we calculate it?
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Optical flow equation

O=1;+VI-|[u v]

Q: how many unknowns and equations per pixel?
1 equation, but 2 unknowns (u and v)

Intuitively, what does this constraint mean?

 The component of the flow in the gradient direction is determined
 The component of the flow parallel to an edge is unknown
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Lukas-Kanade flow

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» |f we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(p;) + VI(py) - [u v]

- Ix(p1)  Iy(p1) - Ii(p1)
I:(p2) Iy(p2) [ u ] _ | Li(p2)
: : (¥ :
Ix(p25) Iy(p2s) . I (p2s)
2_;42 2d1 ’
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RGB version

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» |f we use a 5x5 window, that gives us 25*3 equations per pixel!

0 = I(ppI0,1,2] + VI(py)[0, 1,2] - [u v]

[ I:(p1)[0] Iy(p1)[O] - I:(p1)[0]
I:(p1)[1]  Iy(p1)[1] Ii(p1)[1]
I:c(p_1)[2] Iy(p1)[2] [ . ] Ii(p1)[2]
I(p25)[0] Iy(pas)(0] | L° I(p23)[0]
I:(p25)[1] Iy(p2s5)[1] Ii(p25)[1]

| I:(p25)[2] Iy(p2s)[2] | 11 (p25)[2] |

A d b
5x2 2x1 5x1
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b ——— minimize ||Ad—b|?
25x2 2x1 25x1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(ATA) d= ATb

2X2 2x1 2x1

AT A Alb

[ZLCI;C zfxfy] [u] _ [ z:fxft]

 The summations are over all pixels in the K x K window
» This technique was first proposed by Lukas & Kanade
for stereo matching (1981)



Conditions for solvability

* Optimal (u, v) satisfies Lucas-Kanade equation

Do dxly ) Ixly w | | 2 dxdy
> Ixly > Iyly v | > Iyl

AT A AT

When is This Solvable?

e ATA should be invertible
e ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
e ATA should be well-conditioned
— A/ A, should not be too large (A, = larger eigenvalue)
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Edges cause problems

S vivn!
— large gradients, all the same
— large A, small A,
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Low texture regions don’t work

— gradients have small magnitude
—small A, small A,
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High textured region work best

e e e = o @ =) P
Ve ; ; ; ); ; !

Z VI(VI )T |
— gradients are different, large magnltudes

— large A4, large A,
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Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
e Suppose ATA is easily invertible
e Suppose there is not much noise in the image

When our assumptions are violated
» Brightness constancy is not satisfied
 The motion is not small

* A point does not move like its neighbors
— window size is too large
— what is the ideal window size?
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Revisiting the small motion assumption

Is this motion small enough?
* Probably not—it’s much larger than one pixel (2"9 order terms dominate)
* How might we solve this problem? 21



Reduce the resolution!

20 40 i) & 100 120 140 180




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels
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Gaussian pyramid of image H Gaussian pyramid of image |



Coarse-to-fine optical flow estimation

1

warp & upsample |

v I

run iterative L-K +—
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Gaussian pyramid of image H Gaussian pyramid of image |



A Few Detalls

 Top Level

Apply L-K to get a flow field representing the flow from the
first frame to the second frame.

Apply this flow field to warp the first frame toward the second
frame.

Rerun L-K on the new warped image to get a flow field from
It to the second frame.

Repeat till convergence.

Next Level

Upsample the flow field to the next level as the first guess of
the flow at that level.

Apply this flow field to warp the first frame toward the second
frame.

Rerun L-K and warping till convergence as above.

Etc.
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The Flower Garden Video

What should the
optical flow be?




Robust Visual Motion Analysis:
Piecewise-Smooth Optical Flow

Ming Ye
Electrical Engineering
University of Washington
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Structure From Motion

Rigid scene + camera translation

Estimated horizontal motion

Depth map
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Scene Dynamics Understanding

Brighter
pixels =>
larger
speeds.

e Surveillance
e Event analysis
* Video compression

Motion
boundaries
are smooth.

Motion smoothness
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Target Detection and Tracking

A tiny airplane --- only
observable by its distinct
motion

Tracking results
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Estimating Piecewise-Smooth Optical Flow
with Global Matching and Graduated Optimization

Problem Statement:

Assuming only brightness conservation
and piecewise-smooth motion, find the
optical flow to best describe the intensity
change In three frames.
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Approach: Matching-Based Global
Optimization

o Step 1. Robust local gradient-based method for
high-quality initial flow estimate.

e Step 2. Global gradient-based method to improve the
flow-field coherence.

e Step 3. Global matching that minimizes energy by a
greedy approach.
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Global Energy Design

Global energy
E — ZEB(VS)_I_ ES(\/S)

all sites s

* V Is the optical flow field.
V. Is the optical flow at pixel (site) s.
 E; Is the brightness conservation error.

 E5 Is the flow smoothness error in a neighborhood about pixel s.
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Global Energy Design

Brightness error E.(V.)=p(e, (V.),05)
warping error e, (V) =min( 1" (V) =1 ], 17(V)-1.]

I"(V) Is the warped intensity in the previous frame.
1*(V,) Is the warped intensity in the next frame.

@ o @
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p(x,0) =——— where o is a scale parameter. ,,
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Global Energy Design

Smoothness error 1
ES (VI) :g Zp(lvs _Vn |’O-SS)

neNg

Smoothness error is computed in a neighborhood around pixel s.
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Overall Algorithm
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Advantages

Best of Everything

 Local OFC
— High-quality initial flow estimates
— Robust local scale estimates

e Global OFC
— Improve flow smoothness

* Global Matching
— The optimal formulation
— Correct errors caused by poor gradient quality and hierarchical

process

Results: fast convergence, high accuracy, simultaneous motion
boundary detection
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Experiments

 EXperiments were run on several standard test videos.

e Estimates of optical flow were made for the middle
frame of every three.

 The results were compared with the Black and
Anandan algorithm.
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TS: Translating Squares

Homebrew, ideal setting, test performance upper bound

D
I

64x64, 1pixel/frame

Groundtruth (cropped),
Our estimate looks the same
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te Plots

Ima
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[T: Translating Tree

————
150x150 (Barron 94)
el (o) e|.| (pix) §(pix) 22
BA | 260 0.128 0.0724
S3 | 0.248 0.0167 0.00984

I I I
0 0.5 1 1.5
<]

e: error in pixels, cdf: culmulative distribution function for all pixels
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DT: Diverging Tree

150x150 (Barron 94)

el (O) el.l (pIX) é(plX) :: | 2'2
BA |6.36 0182 0114 |
S3 | 260 0.0813 0.0507 | | | | |
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YOS: Yosemite Fly-Through

SR R e
316x252 (Barron, cloud excluded)

el (o) e|.| (pix) §(pix)
BA | 2.71 0.185 0.118
S3 {192 0.120 0.0776
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TAXI: Hamburg Taxi

ox190, (Barron 94
max speed 3.0 pix/frame

Ours Error map Smoothness er4[10r



512x512

(Nagel)
max speed.:
6.0 pix/frame

Smoothness errdp




Pepsi Can

201x201
(Black)
I\/Ia_x speed: ours
4 2pix/frame
Smoothness
BA error
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Flower Garden

FG
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