Interest Operators

All lectures are from posted research papers.

- Harris Corner Detector: the first and most basic interest operator
- Kadir Entropy Detector and its use in object recognition
- SIFT interest point detector and region descriptor
- MSER region detector and Harris Affine in region matching

0. Introduction to Interest Operators

- Find "interesting" pieces of the image
 - e.g. corners, salient regions
 - Focus attention of algorithms
 - Speed up computation
- Many possible uses in matching/recognition
 - Search
 - Object recognition
 - Image alignment & stitching
 - Stereo
 - Tracking

— ...

Interest points

0D structure

not useful for matching

1D structure

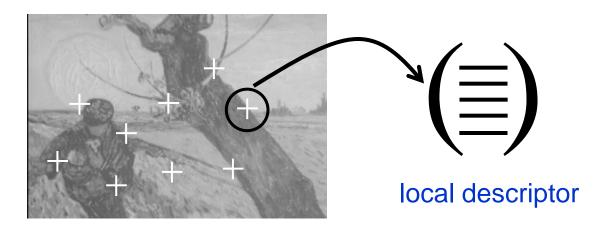
 edge, can be localised in 1D, subject to the aperture problem

2D structure

 corner, or interest point, can be localised in 2D, good for matching

Interest Points have 2D structure.

Local invariant photometric descriptors -



Local : robust to occlusion/clutter + no segmentation *Photometric* : (use pixel values) distinctive descriptions *Invariant* : to image transformations + illumination changes

History - Matching

- 1. Matching based on correlation alone
- 2. Matching based on geometric primitives
 - e.g. line segments
- \Rightarrow Not very discriminating (why?)
- \Rightarrow Solution : matching with interest points & correlation

[A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry,Z. Zhang, R. Deriche, O. Faugeras and Q. Luong,

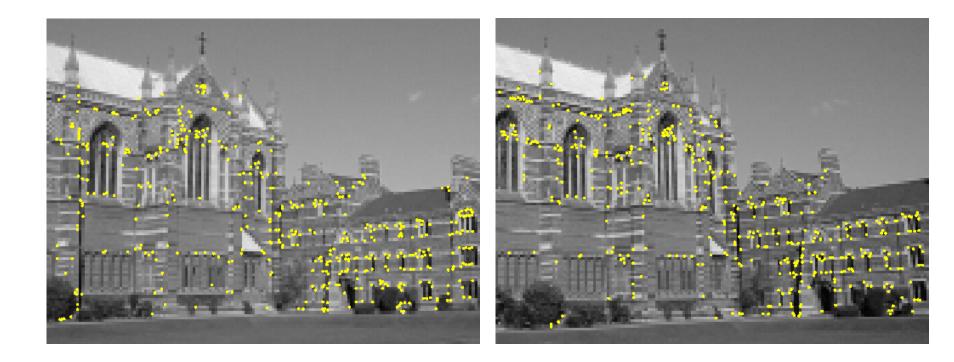
Artificial Intelligence 1995]

Zhang Approach

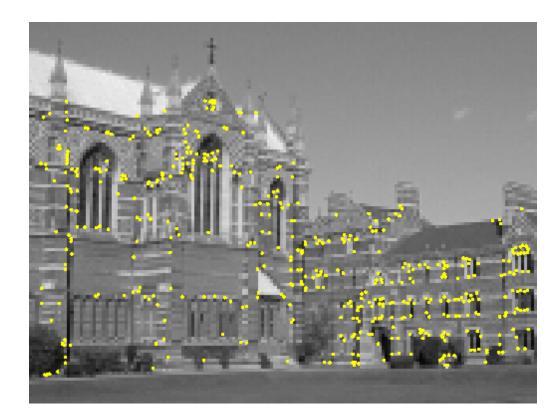
- Extraction of interest points with the Harris detector
- Comparison of points with cross-correlation
- Verification with the fundamental matrix

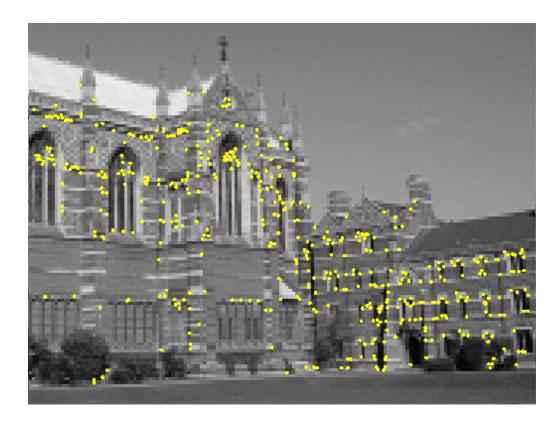
The fundamental matrix maps points from the first image to corresponding points in the second matrix using a homography that is determined through the solution of a set of equations that usually minimizes a least square error. CH 12-13⁶

Preview: Harris detector



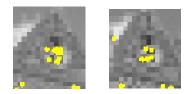
Interest points extracted with Harris (~ 500 points)

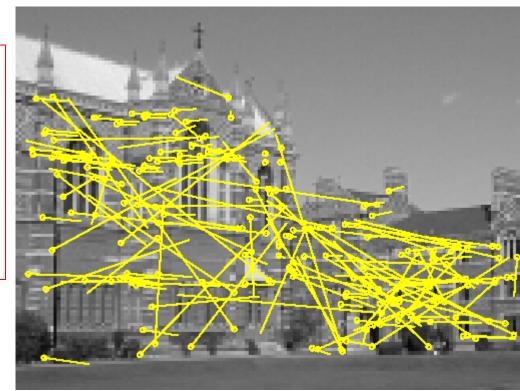




Cross-correlation matching

Match two points based on how similar their neighborhoods are.

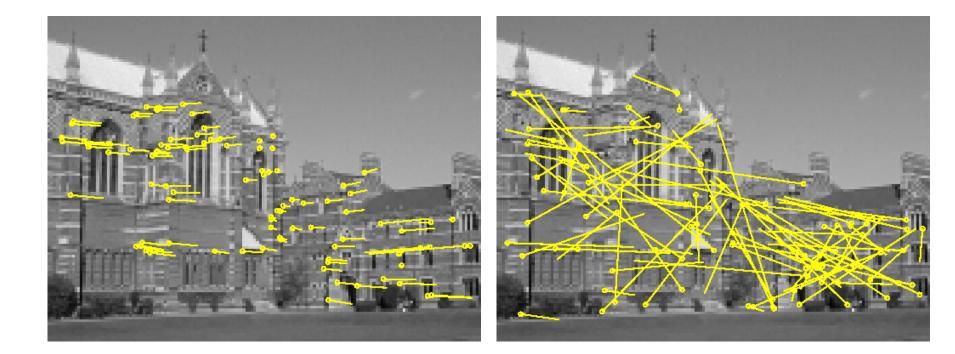




Initial matches – motion vectors (188 pairs) $_{10}$

Global constraints

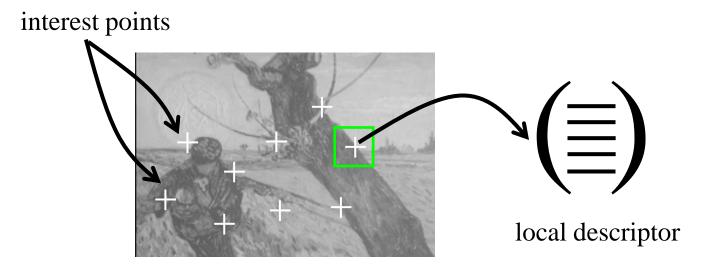
Robust estimation of the fundamental matrix (RANSAC)



99 inliers

89 outliers

General Interest Detector/Descriptor Approach



- 1) Extraction of interest points (characteristic locations)
- 2) Computation of local descriptors (rotational invariants)
- 3) Determining correspondences
- 4) Selection of similar images

Based on the idea of auto-correlation

Important difference in all directions => interest point $_{13}$

Background: Moravec Corner Detector

- take a window w in the image
- shift it in four directions (1,0), (0,1), (1,1), (-1,1)
- compute a difference for each
- compute the min difference at each pixel
- local maxima in the min image are the corners

 $\mathbf{E}(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{u},\mathbf{v} \text{ in } \mathbf{w}} \mathbf{w}(\mathbf{u},\mathbf{v}) |\mathbf{I}(\mathbf{x}+\mathbf{u},\mathbf{y}+\mathbf{v}) - \mathbf{I}(\mathbf{u},\mathbf{v})|^2$

Shortcomings of Moravec Operator

- Only tries 4 shifts. We'd like to consider "all" shifts.
- Uses a discrete rectangular window. We'd like to use a smooth circular (or later elliptical) window.
- Uses a simple min function. We'd like to characterize variation with respect to direction.

Result: Harris Operator

Auto-correlation fn (SSD) for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$f(x, y) = \sum_{\substack{(x_k, y_k) \in W \\ \text{SSD means summed square difference}}} I(x_k, y_k + \Delta y)^2$$
SSD means summed square difference
Discrete shifts can be avoided with the auto-correlation matrix
what is this?
with $I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k)) \left(\frac{\Delta x}{\Delta y}\right)$

$$f(x, y) = \sum_{\substack{(x_k, y_k) \in W \\ (I_x(x_k, y_k) - I_y(x_k, y_k)) \left(\frac{\Delta x}{\Delta y}\right)^2} I(x_k, y_k) = I(x_k, y_k) I_y(x_k, y_k) \left(\frac{\Delta x}{\Delta y}\right)^2$$

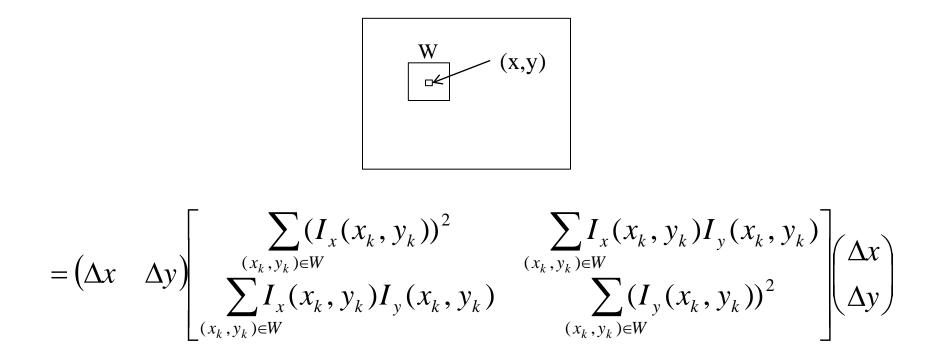
Rewrite as inner (dot) product

$$f(x,y) = \sum_{(x_k,y_k)\in W} \left(\begin{bmatrix} I_x(x_k,y_k) & I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^2$$
$$= \sum_{(x_k,y_k)\in W} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x(x_k,y_k) \\ I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} I_x(x_k,y_k) & I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

The center portion is a 2x2 matrix

Have we seen this matrix before?

$$= \sum_{W} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$
$$= \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \sum_{W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$



Auto-correlation matrix M

- Auto-correlation matrix
 - captures the structure of the local neighborhood
 - measure based on **eigenvalues** of M
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region
- Interest point detection
 - threshold on the eigenvalues
 - local maximum for localization

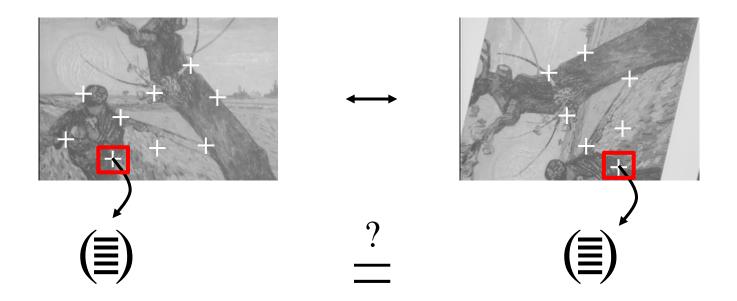
Harris Corner Detector

- Corner strength $R = Det(M) k Tr(M)^2$
- Let α and β be the two eigenvalues
- $Tr(M) = \alpha + \beta$
- $Det(M) = \alpha\beta$
- R is positive for corners, negative for edges, and small for flat regions
- Selects corner pixels that are 8-way local maxima

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \begin{array}{c} \det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21} \\ \operatorname{tr}(\mathbf{A}) = a_{11} + a_{22} \end{array}$$

 $\mathbf{R} = \mathbf{Det}(\mathbf{M}) - \mathbf{k} \operatorname{Tr}(\mathbf{M})^2$ is the Harris Corner₂₀Detector.

Now we need a descriptor

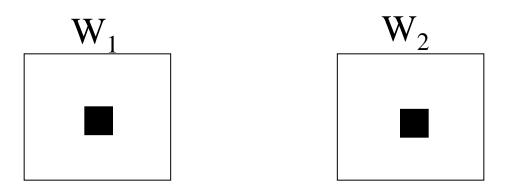


Vector comparison using a distance measure

What are some suitable distance measures?

Distance Measures

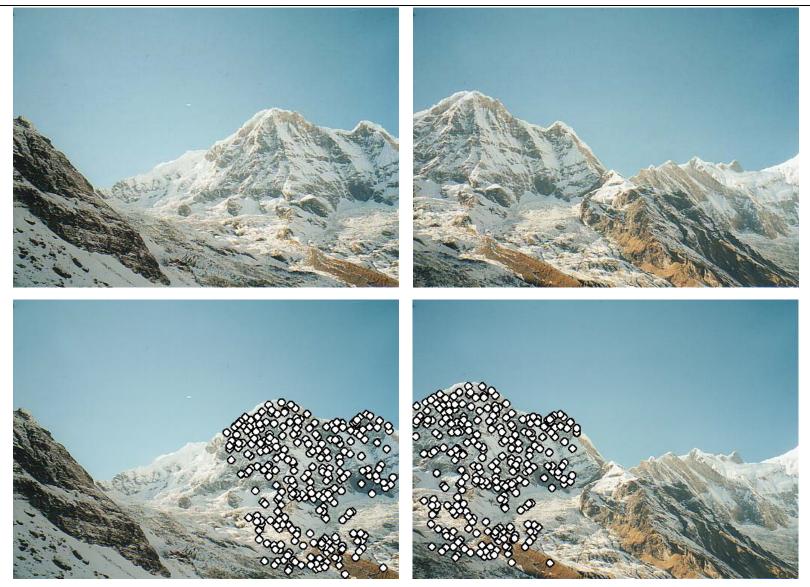
• We can use the sum-square difference of the values of the pixels in a square neighborhood about the points being compared.



 $SSD = \sum (W_1(i,j) - (W_2(i,j))^2)$

Works when the motion is mainly a translation. 22

Some Matching Results from Matt Brown



Some Matching Results

Summary of the approach

- Basic feature matching = Harris Corners & Correlation
- Very good results in the presence of occlusion and clutter
 - local information
 - discriminant greyvalue information
 - invariance to image rotation and illumination
- Not invariance to scale and affine changes
- Solution for more general view point changes
 - local invariant descriptors to scale and rotation
 - extraction of invariant points and regions

	original	translated	rotated	scaled
--	----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?

original	translated	rotated	scaled

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?

original	translated	rotated	scaled
- J			

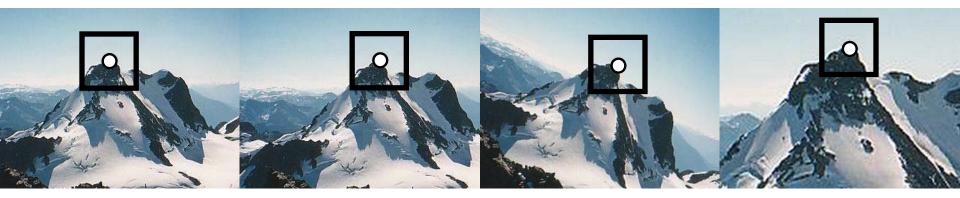
	Translation	Rotation	Scale
Is Harris invariant?	YES	?	?
Is correlation invariant?	?	?	?

original	translated	rotated	scaled

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	?
Is correlation invariant?	?	?	?

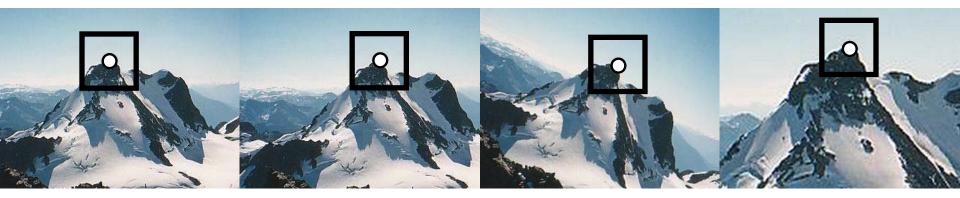
original	translated	rotated	scaled
.			

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?



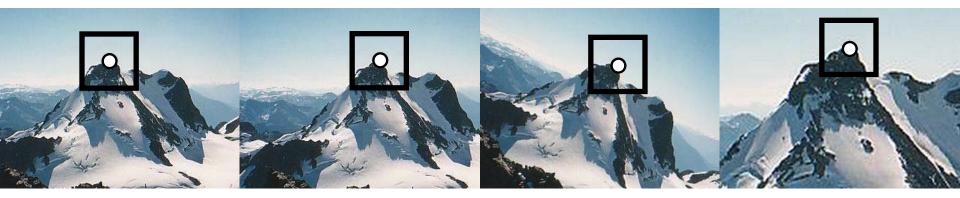
original	translated	rotated	scaled
onginai	(I di loidtod	locatoa	ocurou

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?



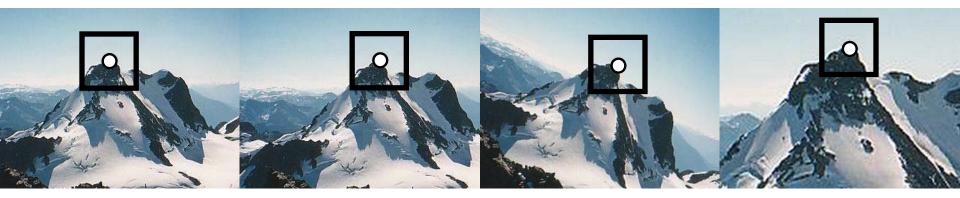
original	translated	rotated	scaled
.			

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	?	?



original	translated	rotated	scaled
.			

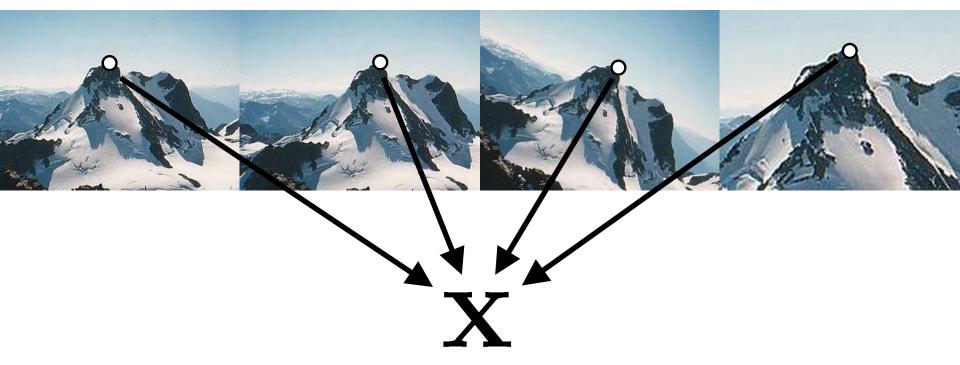
	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	?



original	translated	rotated	scaled
.			

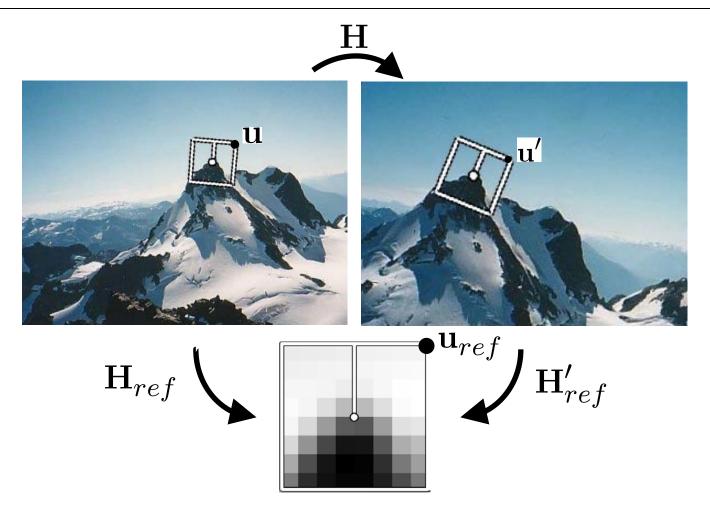
	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	NO

Matt Brown's Invariant Features

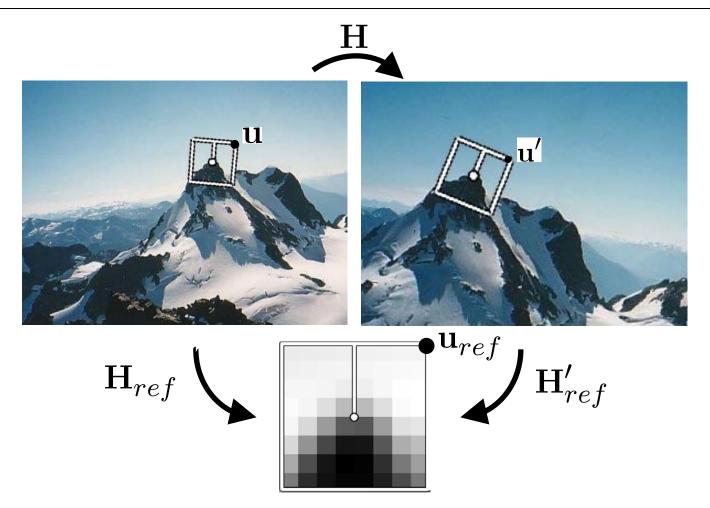


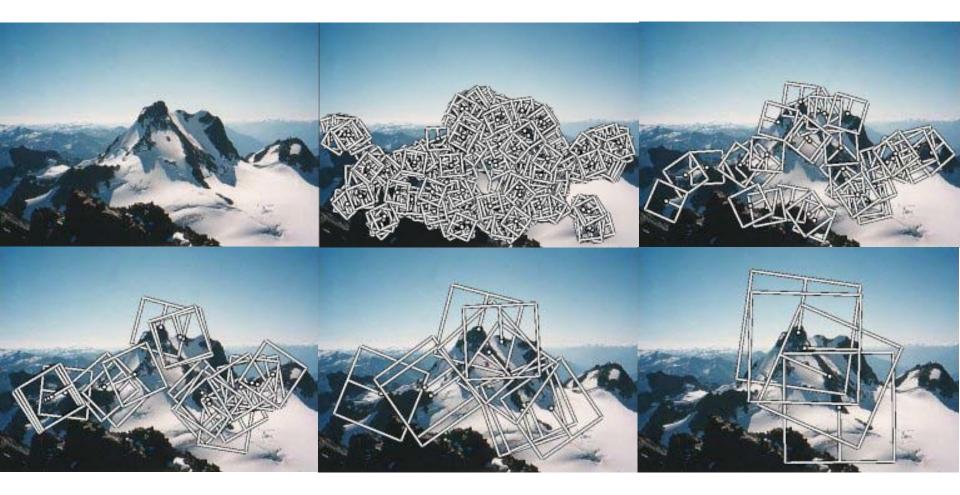
Local image descriptors that are *invariant* (unchanged) under image transformations

Canonical Frames



Canonical Frames





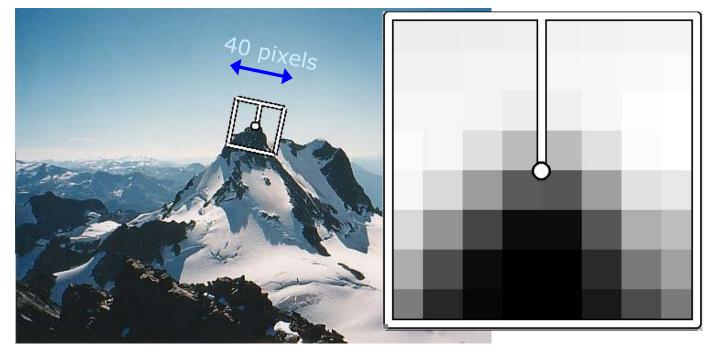
Extract oriented patches at multiple scales using dominant orientation
 ³⁸

• Sample scaled, oriented patch

- Sample scaled, oriented patch
 - 8x8 patch, sampled at 5 x scale

- Sample scaled, oriented patch
 - 8x8 patch, sampled at 5 x scale
- Bias/gain normalized (subtract the mean of a patch and divide by the variance to normalize)
 8 pixels

$$- I' = (I - \mu)/\sigma$$



Matching Interest Points: Summary

- Harris corners / correlation
 - Extract and match repeatable image features
 - Robust to clutter and occlusion
 - BUT not invariant to scale and rotation
- Multi-Scale Oriented Patches
 - Corners detected at multiple scales
 - Descriptors oriented using local gradient
 - Also, sample a blurred image patch
 - Invariant to scale and rotation

Leads to: **SIFT** – state of the art image features