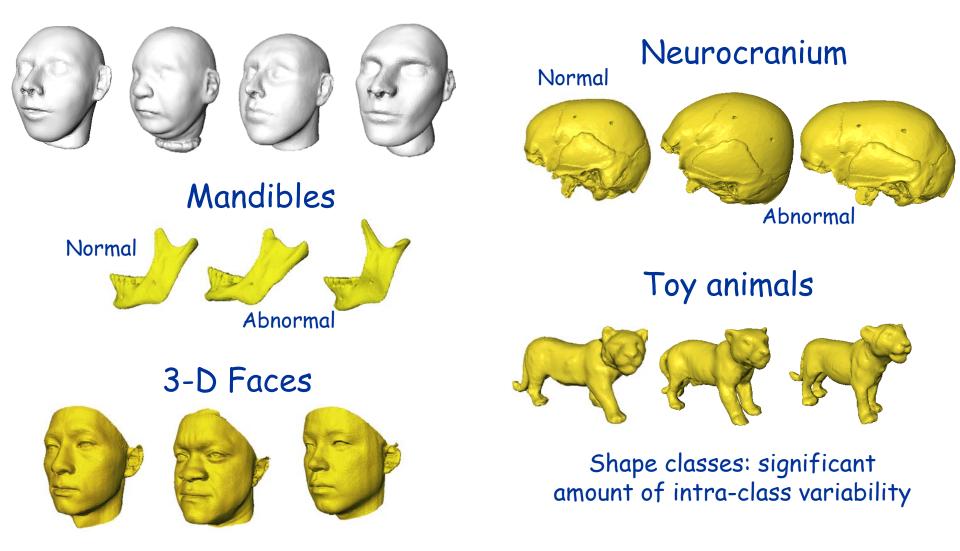
Recognizing Deformable Shapes

Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering

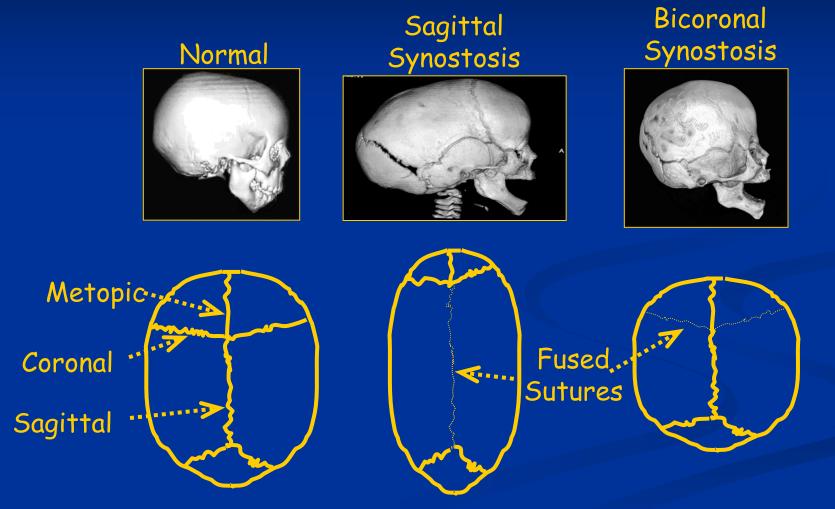
Basic Idea

Generalize existing numeric surface representations for matching 3-D objects to the problem of identifying shape classes allowing for shape deformations.

What Kind Of Deformations?



Deformed Infants' Skulls



Occurs when sutures of the cranium fuse prematurely (synostosis).

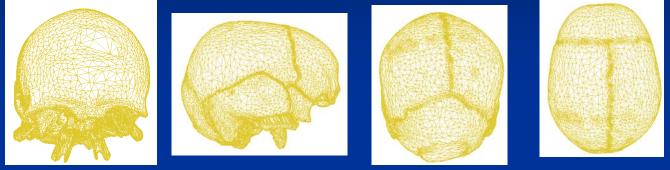
Alignment-Verification Limitations

The approach does not extend well to the problem of identifying classes of similar shapes. In general:

- Numeric shape representations are not robust to deformations.
- There are not exact correspondences between model and scene.
- Objects in a shape class do not align.

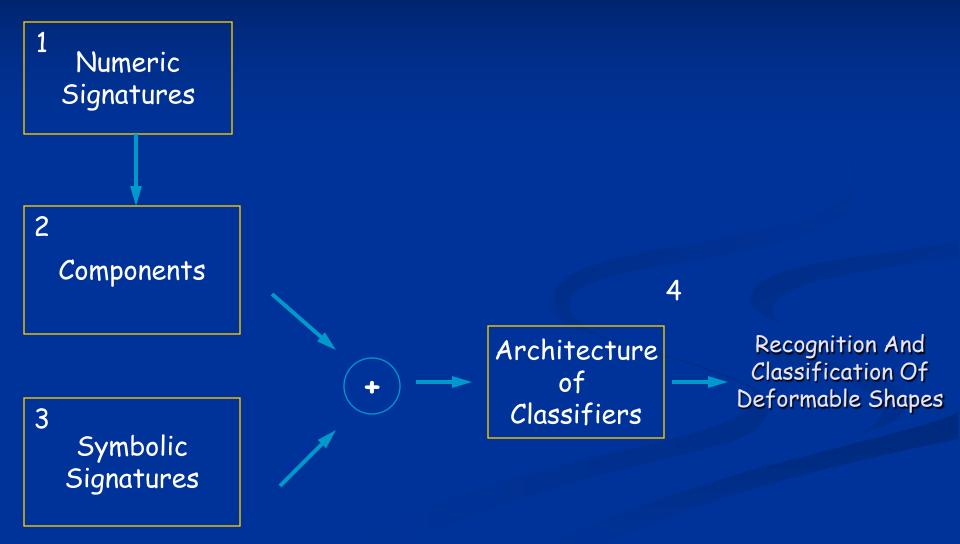
Assumptions

 All shapes are represented as oriented surface meshes of fixed resolution.



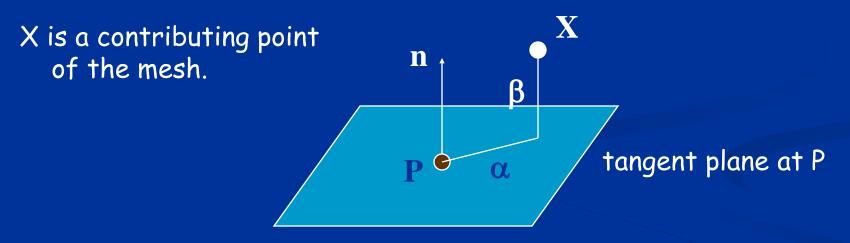
- The vertices of the meshes in the training set are in full correspondence.
- Finding full correspondences : hard problem yes ... but it is approachable (use morphable models technique: Blantz and Vetter, SIGGRAPH 99; C. R. Shelton, IJCV, 2000; Allen et al., SIGGRAPH 2003).

Four Key Elements To Our Approach



The Spin Image Signature

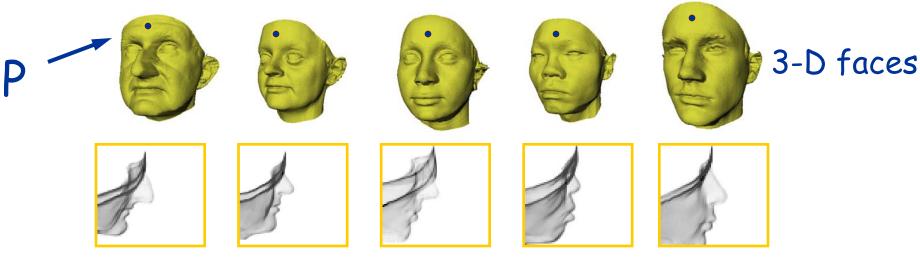
P is the selected vertex.



 α is the perpendicular distance from X to P's surface normal.

 β is the signed perpendicular distance from X to P's tangent plane.

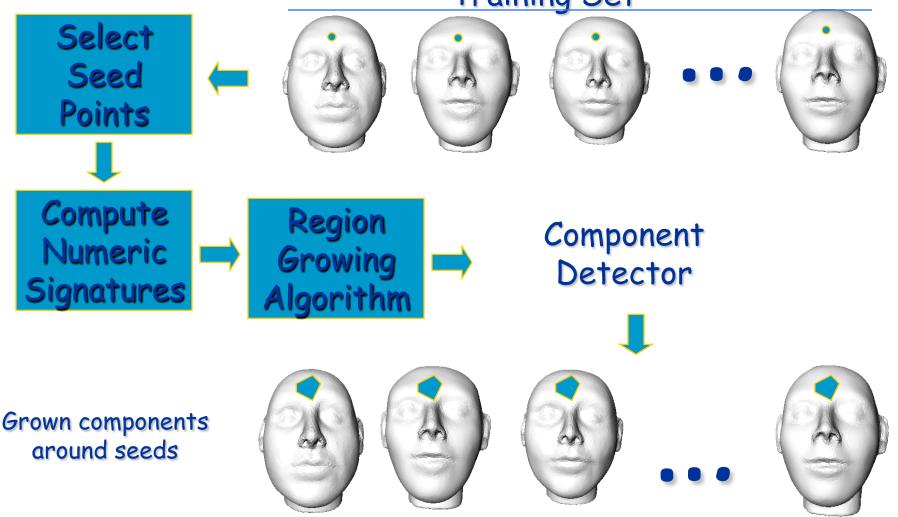
Numeric Signatures: Spin Images



Spin images for point P

- Rich set of surface shape descriptors.
- Their spatial scale can be modified to include local and non-local surface features.
- Representation is robust to scene clutter and occlusions.

Shape Class Components: Clusters of 3D Points with Similar Spin Images Training Set

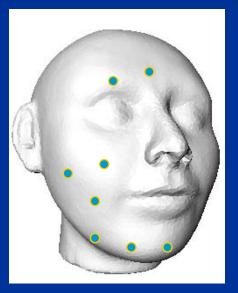


Component Extraction Example

Region

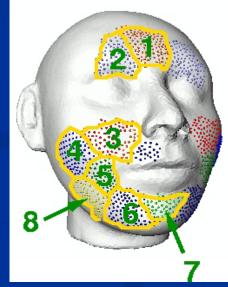
Growing

Selected 8 seed points by hand



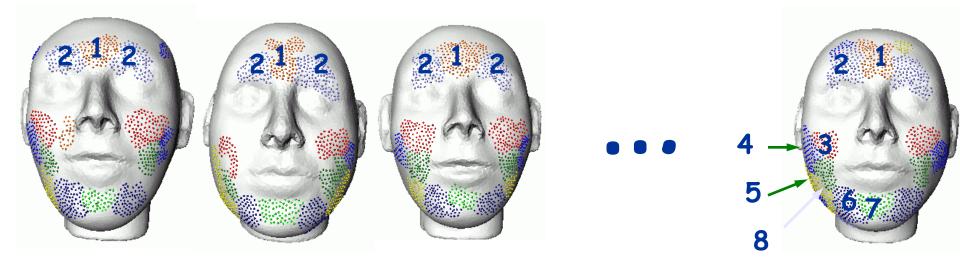
Grow one region at the time (get one detector per component)

Labeled Surface Mesh



Detected components on a training sample

How To Combine Component Information?

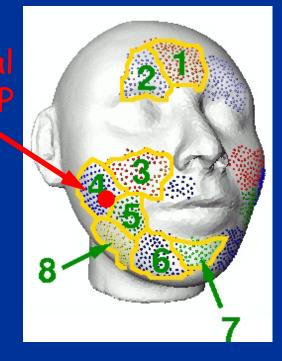


Extracted components on test samples

Note: Numeric signatures are invariant to mirror symmetry; our approach preserves such an invariance.

Symbolic Signature

Labeled Surface Mesh

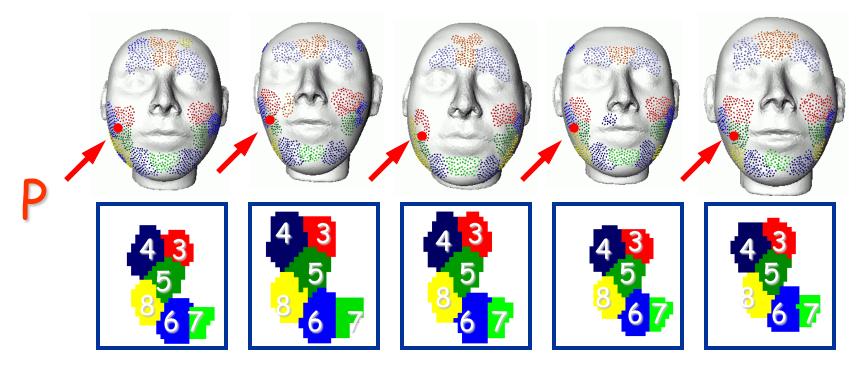


Encode Geometric Configuration

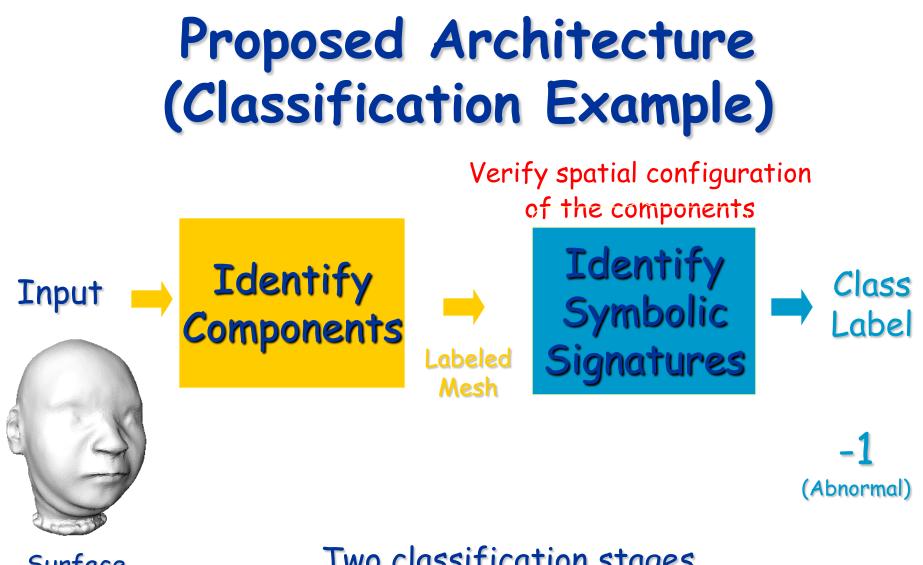
Symbolic Signature at P

Matrix storing component labels

Symbolic Signatures Are Robust To Deformations



Relative position of components is stable across deformations: experimental evidence



Surface Mesh

Two classification stages

Architecture Implementation

- ALL our classifiers are (off-the-shelf) v-Support Vector Machines (v-SVMs) (Schölkopf et al., 2000 and 2001).
- Component (and symbolic signature) detectors are one-class classifiers.
- Component label assignment: performed with a multi-way classifier that uses pairwise classification scheme.
- Gaussian kernel.

Experimental Validation

Recognition Tasks: 4 (T1 - T4) Classification Tasks: 3 (T5 - T7) No. Experiments: 5470

Rotary Table

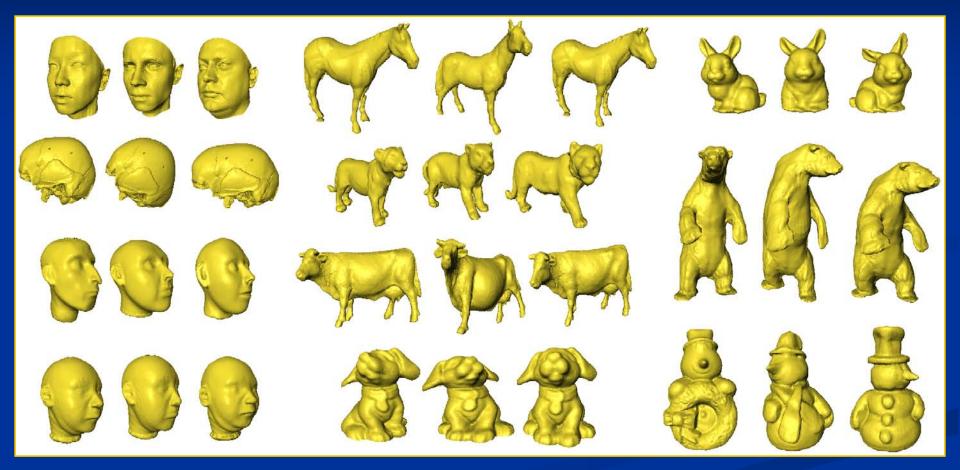
Setup

Laser

Recognition

Classification

Shape Classes



Enlarging Training Sets Using Virtual Samples

Morphs

Original

(14)

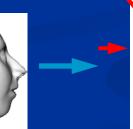
Push wist (10 deg) +Scale (1.2)

+ Taper

- Push

Originals

Morphs



Physical Modeling

Global Morphing Operators

Electrical Engineering

University of Washington

Task 1: Recognizing Single Objects (1)

No. Shape classes: 9.

- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1960.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40x40.
- Symbolic signature size: 20x20.
- No clutter and occlusion.

Task 1: Recognizing Single Objects (2)

Snowman: 93%.

Rabbit: 92%.

Dog: 89%.
Cat: 85.5%.
Cow: 92%.
Bear: 94%.

Horse: 92.7%.

Human head: 97.7%.

Human face: 76%.

Recognition rates (true positives) (No clutter, no occlusion, complete models)

Tasks 2-3: Recognition In Complex Scenes (1)

No. Shape classes: 3. Training set size: 400 meshes. Testing set size: 200 meshes. No. Experiments: 1200. No. Component detectors:3. No. Symbolic signature detectors: 1. Numeric signature size: 40x40. Symbolic signature size: 20x20. T2 - low clutter and occlusion.

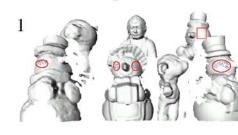
Task 2-3: Recognition in Complex Scenes (2)

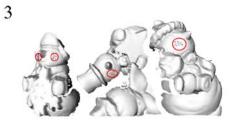
Shape	True	False	True	False
Class	Positives	Positives	Positives	Positives
Snowmen	91%	31%	87.5%	28%
Rabbit	90.2%	27.6%	84.3%	24%
Dog	89.6%	34.6%	88.12%	22.1%

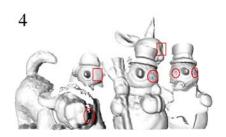
Task 2

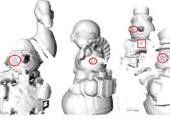
Task 3

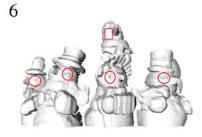
Task 2-3: Recognition in Complex Scenes (3)











Main Contributions (1)

A novel symbolic signature representation of deformable shapes that is robust to intra-class variability and missing information, as opposed to a numeric representation which is often tied to a specific shape.

A novel kernel function for quantifying symbolic signature similarities.

Main Contributions (2)

- A region growing algorithm for learning shape class components.
- A novel architecture of classifiers for abstracting the geometry of a shape class.
- A validation of our methodology in a set of large scale recognition and classification experiments aimed at applications in scene analysis and medical diagnosis.