3D Sensing and Reconstruction

 Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4- Perspective Geometry
- Camera Model
- Stereo Triangulation
-3D Reconstruction by Space Carving

3D Shape from X

 means getting 3D coordinates from different methods- shading
- silhouette
- texture

mainly research

- stereo
- light striping
- motion

used in practice

Perspective Imaging Model: 1D

real image

This is the axis of the real image plane.
O is the center of projection.

This is the axis of the front image plane, which we use.

$$
\frac{x_{i}}{f}=\frac{x_{c}}{z_{c}}
$$

Perspective in 2D x_{s}

 (Simplified)$$
\begin{aligned}
& \text { 3D object point } \\
& \mathrm{P}=\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}} \mathrm{z}_{\mathrm{c}}\right) \\
& =\left(\mathrm{x}_{\mathrm{w}}, y_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}\right)
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{c}}
$$

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}=\left(\mathrm{f} / \mathrm{z}_{\mathrm{c}}\right) \mathrm{x}_{\mathrm{c}} \\
& \mathrm{yi}=\left(\mathrm{f} / \mathrm{z}_{\mathrm{c}}\right) \mathrm{y}_{\mathrm{c}}
\end{aligned}
$$

Here camera coordinates equal world coordinates.

$$
\frac{y_{i}}{f}=\frac{y_{c}}{z_{c}}
$$

3D from Stereo

- 3D point

disparity: the difference in image location of the same 3D point when projected under perspective to two different cameras.

$$
\mathrm{d}=\mathrm{X}_{\text {left }}-\mathrm{X}_{\text {right }}
$$

Depth Perception from Stereo Simple Model: Parallel Optic Axes

$$
\frac{\mathrm{z}}{\mathrm{f}}=\frac{\mathrm{x}}{\mathrm{x}_{\mathrm{l}}} \quad \frac{\mathrm{z}}{\mathrm{f}}=\frac{\mathrm{x}-\mathrm{b}}{\mathrm{x}_{\mathrm{r}}} \quad \frac{\mathrm{z}}{\mathrm{f}}=\frac{\mathrm{y}}{\mathrm{y}_{\mathrm{l}}}=\frac{\mathrm{y}}{\mathrm{y}_{\mathrm{r}}} \quad \begin{gathered}
\mathrm{y} \text {-axis is } \\
\text { perpendicular } \\
\text { to the page. }
\end{gathered}
$$

Resultant Depth Calculation

For stereo cameras with parallel optical axes, focal length f , baseline b , corresponding image points ($\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}$) and ($\mathrm{x}_{\mathrm{r}} \mathrm{y}_{\mathrm{r}}$) with disparity d:

$$
\begin{aligned}
& \mathrm{z}=\mathrm{f} * \mathrm{~b} /\left(\mathrm{x}_{\mathrm{l}}-\mathrm{x}_{\mathrm{r}}\right)=\mathrm{f} * \mathrm{~b} / \mathrm{d} \\
& \mathrm{x}=\mathrm{x}_{\mathrm{l}} * \mathrm{z} / \mathrm{f} \text { or } \mathrm{b}+\mathrm{x}_{\mathrm{r}}^{*} \mathrm{z}^{2} / \mathrm{f} \\
& \mathrm{y}=\mathrm{y}_{\mathrm{l}} * \mathrm{z} / \mathrm{f} \text { or } \mathrm{y}_{\mathrm{r}}^{*} \mathrm{z} / \mathrm{f}
\end{aligned}
$$

This method of determining depth from disparity is called triangulation.

Finding Correspondences

- If the correspondence is correct, triangulation works VERY well.
- But correspondence finding is not perfectly solved. (What methods have we studied?)
- For some very specific applications, it can be solved for those specific kind of images, e.g. windshield of a car.

3 Main Matching Methods

1. Cross correlation using small windows.

dense
2. Symbolic feature matching, usually using segments/corners.

sparse
3. Use the newer interest operators, ie. SIFT.

Epipolar Geometry Constraint: 1. Normal Pair of Images

The epipolar plane cuts through the image plane(s) forming 2 epipolar lines.

The match for P_{1} (or P_{2}) in the other image, must lie on the same epipolar line.

Epipolar Geometry: General Case

Constraints

1. Epipolar Constraint: Matching points lie on corresponding epipolar lines.
2. Ordering Constraint: Usually in the same order across the lines.

Structured Light

light stripe
3D data can also be derived using

- a single camera
- a light source that can produce stripe(s) on the 3D object
light
source

Structured Light 3D Computation

3D data can also be derived using

- a single camera
- a light source that can produce stripe(s) on the 3D object

	b	
[x y z	-----------	X y f]
3D	$\mathrm{f} \cot \theta-\mathrm{x}$	image

Depth from Multiple Light Stripes

What are these objects?

Our (former) System

4-camera light-striping stereo

Camera Model: Recall there are 5 Different Frames of Reference

- Object
- World
- Camera
- Real Image
- Pixel Image

The Camera Model

How do we get an image point IP from a world point P?

$$
\begin{aligned}
& \left(\begin{array}{c}
\mathrm{s} \mathrm{IP}_{\mathrm{r}} \\
\mathrm{~s} \mathrm{IP}_{\mathrm{c}} \\
\mathrm{~s}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{c}_{11} & \mathrm{c}_{12} & \mathrm{c}_{13} & \mathrm{c}_{14} \\
\mathrm{C}_{21} & \mathrm{c}_{22} & \mathrm{c}_{23} & \mathrm{c}_{24} \\
\mathrm{C}_{31} & \mathrm{c}_{32} & \mathrm{c}_{33} & 1
\end{array}\right)
\end{aligned} \begin{gathered}
\left(\begin{array}{c}
\mathrm{P}_{\mathrm{x}} \\
\mathrm{P}_{\mathrm{y}} \\
\mathrm{P}_{\mathrm{z}} \\
1
\end{array}\right) \\
\text { image } \\
\text { camera matrix C }
\end{gathered} \begin{aligned}
& \text { world } \\
& \text { point }
\end{aligned}
$$

The camera model handles the rigid body transformation from world coordinates to camera coordinates plus the perspective transformation to image coordinates.

$$
\begin{aligned}
& \text { 1. } \quad \mathrm{CP}=\mathrm{T} \mathrm{R} \mathrm{WP} \\
& \text { 2. } \quad \mathrm{FP}=\pi(\mathrm{f}) \mathrm{CP}
\end{aligned}
$$

Camera Calibration

- In order work in 3D, we need to know the parameters of the particular camera setup.
- Solving for the camera parameters is called calibration.

- intrinsic parameters are of the camera device
- extrinsic parameters are where the camera sits in the world

Intrinsic Parameters

- principal point $\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right)$
- scale factors $\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}\right)$
- aspect ratio distortion factor γ
- focal length f

- lens distortion factor κ (models radial lens distortion)

Extrinsic Parameters

- translation parameters

$$
\mathrm{t}=\left[\begin{array}{lll}
\mathrm{t}_{\mathrm{x}} & \mathrm{t}_{\mathrm{y}} & \mathrm{t}_{\mathrm{z}}
\end{array}\right]
$$

- rotation matrix

$$
R=\left(\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \\
& \text { Are there really } \\
& \text { nine parameters? }
\end{aligned}
$$

Calibration Object

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

The Tsai Procedure

- The Tsai procedure was developed by Roger Tsai at IBM Research and is most widely used.
- Several images are taken of the calibration object yielding point correspondences at different distances.
- Tsai's algorithm requires $\mathrm{n}>5$ correspondences

$$
\left.\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)\right) \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}
$$

between (real) image points and 3D points.

- Lots of details in Chapter 13.

We use the camera parameters of each camera for general stereo.

For a correspondence $\left(r_{1}, c_{1}\right)$ in image 1 to (r2,c2) in image 2:

1. Both cameras were calibrated. Both camera matrices are then known. From the two camera equations B and C we get

4 linear equations in 3 unknowns.

$$
\begin{aligned}
& r_{1}=\left(b_{11}-b_{31} * r_{1}\right) \mathbf{x}+\left(b_{12}-b_{32} * r_{1}\right) \mathbf{y}+\left(\mathrm{b}_{13}-\mathrm{b}_{33} * \mathrm{r}_{1}\right) \mathbf{z} \\
& \mathrm{c}_{1}=\left(\mathrm{b}_{21}-\mathrm{b}_{31} * \mathrm{c} 1\right) \mathbf{x}+\left(\mathrm{b}_{22}-\mathrm{b}_{32} * \mathrm{c}_{1}\right) \mathbf{y}+\left(\mathrm{b}_{23}-\mathrm{b}_{33} * \mathrm{c}_{1}\right) \mathbf{z} \\
& \mathrm{r}_{2}=\left(\mathrm{c}_{11}-\mathrm{c}_{31} * \mathrm{r}_{2} \mathbf{x}+\left(\mathrm{c}_{12}-\mathrm{c}_{32} * \mathrm{r}_{2}\right) \mathbf{y}+\left(\mathrm{c}_{13}-\mathrm{c}_{33} * r_{2}\right) \mathbf{z}\right. \\
& \mathrm{c}_{2}=\left(\mathrm{c}_{21}-\mathrm{c}_{31} * \mathrm{c}_{2}\right) \mathbf{x}+\left(\mathrm{c}_{22}-\mathrm{c}_{32} * \mathrm{c}_{2}\right) \mathbf{y}+\left(\mathrm{c}_{23}-\mathrm{c}_{33} * \mathrm{c}_{2}\right) \mathbf{z}
\end{aligned}
$$

Direct solution uses 3 equations, won’t give reliable results.

Solve by computing the closest approach of the two skew rays.

$$
V=\left(P_{1}+a_{1}{ }^{*} u_{1}\right)-\left(Q_{1}+a_{2}{ }^{*} u_{2}\right)
$$

If the rays intersected perfectly in 3D, the intersection would be P. Instead, we solve for the shortest line segment connecting the two rays and let P be its midpoint.

Surface Modeling and Display from Range and Color Data

| Kari Pulli | UW |
| :--- | :--- | :--- |
| Michael Cohen | MSR |
| Tom Duchamp | UW |
| Hugues Hoppe | MSR |
| John MCDonald | UW |
| Linda Shapiro | UW |
| Werner Stuetzle | UW |

$$
\begin{array}{ll}
U W= & \text { University of Washington } \\
M S R=\quad & \text { Seattle, WA USA } \\
\text { Microsoft Research } \\
\text { Redmond, WA USA }
\end{array}
$$

Introdiction

Goal

- develop robust algorithms for constructing 3D models from range \& color data
- use those models to produce realistic renderings of the scanned objects

Surface Reconstuction

Step 1: Data acquisition
Obtain range data that covers the object. Filter, remove background.
Step 2: Registration
Register the range maps into a common coordinate system.
Step 3: Integration
Integrate the registered range data into a single surface representation.
Step 4: Optimization
Fit the surface more accurately to the data, simplify the representation.

Problem

Carve space in culbes

Label cubes

- Project cube to image plane (hexagon)
- Test against data in the hexagon

Several views

Processing order: FOR EACH cube FOR EACH View

Rules:
any view thinks cube's out \Rightarrow it's out
every view thinks cube's in
\Rightarrow it's in
else
\Rightarrow it's at boundary

Hferarchical space carving

- Big cubes \Rightarrow fast, poor results
- Small cubes \Rightarrow slow, more accurate results
- Combination $=$ octrees

RULES: •cube's out \Rightarrow done

- cube's in \Rightarrow done
- else $\quad \Rightarrow$ recurse

Hferarchical space carving

- Big cubes \Rightarrow fast, poor results
- Small cubes \Rightarrow slow, more accurate results
- Combination $=$ octrees

RULES: •cube's out \Rightarrow done

- cube's in \Rightarrow done
- else $\quad \Rightarrow$ recurse

The rest of the chair

Same for a busky pup

4

Optinizing the dag mest

Registered points

Initial mesh

Optimized mesh

View dependent textuning

our viewer

