Lecture 9

Pattern Recognition & Learning

(Rowley, Baluja & Kanade, 1998)

Motivation: Object Classification

Suppose you are given a dataset of images containing 2 classes of objects

Test Set of Images

Can a computer vision system learn to automatically classify these new images?

Images as Patterns

Binary handwritten characters

Greyscale images

62	79	23	119	120	105	4	0	
10	10	9	62	12	78	34	0	
10	58	197	46	46	0	0	48	
176	135	5	188	191	68	0	49	
2	1	1	29	26	37	0	77	
0	89	144	147	187	102	62	208	
255	252	0	166	123	62	0	31	
166	63	127	17	1	0	99	30	

Treat an image as a highdimensional vector (e.g., by reading pixel values left to right, top to bottom row)

$$\mathbf{I} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_{N-2} \\ p_N \end{bmatrix}$$

Pixel value p_i can be 0 or 1 (binary image) or 0 to 255 (greyscale)

Feature representation

- Trying to classify raw images directly may be
 - inefficient (huge number of pixels *N*)
 - error-prone (raw pixel values not invariant to transformations)
- Better to extract features from the image and use these for classification
- Represent each image I by a vector of features:

$$\mathbf{F}_{\mathbf{I}} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{n-1} \\ f_n \end{bmatrix}$$

n is typically much smaller than *N* (though doesn't have to be)

Types of Features: Binary Images

Features for binary characters ('A', 'B', 'C', ..) could be number of strokes, number of holes, area, etc.

class) haracter	ares	height	vidth	number #holes	number #strokes	(cr,cy) center	best aris
		10192320	120221	1997	<u>.</u>		<u></u>
· A ·	medium	bigh	3/4		3	1/2,2/3	90
' B '	medium	high	3/4	2	1	1/3,1/2	90
' 8'	medium	high	2/3	2	0	1/2,1/2	90
° 0 °	medium	bigh	2/3	1	0	1/2,1/2	90
'1'	lov	high	1/4	0	1	1/2,1/2	90
?¥?	high	high	1	Û	4	1/2,2/3	90
, I ,	high	high	3/4	0	2	1/2,1/2	?
? * ?	medium	109	1/2	0	0	1/2,1/2	?
?=?	109	109	2/3	0	1	1/2,1/2	0
p_{P}	lov	high	2/3	0	1	1/2,1/2	60

Types of Features: Grayscale and Color

- Features for greyscale images could be oriented gradient features, multiscale oriented patches (MOPS), SIFT features, etc.
- Features for color images • could be above features applied to R, G, B images, or opponent images (R-G image, B-(R+G)/2 image)

Image gradients

Keypoint descriptor

Typical Pattern Recognition System

Pattern recognition or classification problem: Given a training dataset of (input image, output class) pairs, build a classifier that outputs a class for any new input image

Example: Dataset of Binary Character Images

Feat	Class						
1742	height	vidth	number #holes	number #strokes	(cr,cy) center	best azis	
medium	high	3/4	I.	3	1/2,2/3	90	۰ ۴ ،
medium	high	3/4	2	Ĩ	1/3,1/2	90	' B '
medium	high	2/3	2	0	1/2,1/2	90	, 8 ,
medium	high	2/3	1	0	1/2,1/2	90	'0'
lov	high	1/4	0	1	1/2,1/2	90	'1'
high	high	1	0	4	1/2,2/3	90	۰ پ ۰
high	high	3/4	Ð	2	1/2,1/2	?	۰ ۲ ،
medium	109	1/2	Û	0	1/2,1/2	?	" * "
109	109	2/3	0	1	1/2,1/2	0	2_2
109	bigh	2/3	D	1	1/2,1/2	60	·/·

Decision Tree

Input: Description of an object through a set of features or attributes

Output: a **decision** that is the predicted output value for the input

Advantages:

- Not all features need be evaluated for every input
- Feature extraction may be interleaved with classification decisions
- Can be easy to design and efficient in execution

Feature values can be discrete or continuous

Example: Decision Tree for Continuous Valued Features

Two features x1 and x2 Two output classes 0 and 1

How do we branch using feature values x1 and x2 to partition the space correctly?

Example: Decision Tree for Continuous Valued Features

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set with one path to leaf for each example

• But most likely won't generalize to new examples

Want to find more compact decision trees (to prevent overfitting and allow generalization)

Decision Tree Learning

Aim: find a small tree consistent with training examplesIdea: (recursively) choose "most significant" attribute (feature) as root of (sub)tree and expand

```
function DTL(examples, attributes, default) returns a decision tree
```

```
if examples is empty then return default
```

else if all *examples* have the same classification then return the classification else if *attributes* is empty then return MODE(*examples*)

else

 $best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)$

 $tree \leftarrow a$ new decision tree with root test best

for each value v_i of *best* do

```
examples_i \leftarrow \{ elements of examples with best = v_i \}
```

 $subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))$

add a branch to *tree* with label v_i and subtree subtree return *tree*

Choosing an attribute/feature to split on

Idea: a good feature should reduce uncertainty

• E.g., splits the examples into subsets that are (ideally) "all positive" or "all negative"

Using information theory to quantify uncertainty

Entropy measures the amount of uncertainty in a probability distribution

<u>Entropy</u> (or Information Content) of an answer to a question with possible answers v_1, \ldots, v_n :

 $I(P(v_1), \ldots, P(v_n)) = - \Sigma_i P(v_i) \log_2 P(v_i)$

Using information theory

Imagine we have *p* examples with Feature1 = 1 or true, and *n* examples with Feature1 = 0 or false.

Our best estimate of the probabilities of Feature1 = true or false is given by: $P(true) \approx p/p + n$ $p(false) \approx n/p + n$

Hence the entropy of Feature1 is given by:

$$I(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Choosing an attribute/feature to split on

Idea: a good feature should reduce uncertainty and result in "gain in information"

How much information do we gain if we disclose the value of some feature?

Example

Before choosing any feature: Entropy = $-6/12 \log(6/12) - 6/12 \log(6/12)$ = $-\log(1/2) = \log(2) = 1$ bit There is "1 bit of information to be discovered"

Example

If we choose Feature2: Go along branch "a": we have entropy = 1 bit; similarly for the others. Information gain = 1-1 = 0 along any branch

If we choose Feature1: In branch "A" and "B", entropy = 0 For "C", entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92 Info gain = (1-0) or (1-0.92) bits > 0 in both cases So choosing Feature1 gains more information!

Entropy across branches

- How do we combine entropy of different branches?
- Answer: Compute average entropy
- Weight entropies according to probabilities of branches

2/12 times we enter "A", so weight for "A" = 1/6 "B" has weight: 4/12 = 1/3 "C" has weight 6/12 = $\frac{1}{2}$

AvgEntropy =
$$\sum_{i=1}^{m} \frac{p_i + n_i}{p + n} Entropy(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

entropy for each branch
weight for each branch

Information gain

Information Gain (IG) or reduction in entropy from using feature A:

IG(A) = Entropy before - AvgEntropy after choosing A

- 1. Choose the feature/attribute with the largest IG
- 2. Create (sub)tree with this feature as root
- 3. Recursively call the algorithm for each value of feature

Performance Measurement

How do we test the performance of the learned tree?
Answer: Try it on a test set of examples not used in training
Learning curve = % correct on test set as a function of training set size

Instead of only 1 subset held out as the test set, better to use K-fold cross-validation:

- Divide data into K subsets of equal size
- Train learning algorithm K times, leaving out one of the subsets. Compute error on left-out subset
- Report average error over all subsets

Leave-1-out cross-validation:

- Train on all but 1 data point, test on that data point; repeat for each point
- Report average error over all points

Confusion matrix

		cla	ss j	outpu	it by	the p	atter	n rec	ognit	ion s	ystem	
		'0'	'1'	'2'	'3'	' 4'	'5'	'6'	'7'	'8'	' 9'	'R'
	' 0'	97	0	0	0	0	0	1	0	0	1	1
	'1'	0	98	0	0	1	0	0	1	0	0	0
true	'2'	0	0	96	1	0	1	0	1	0	0	1
object	'3'	0	0	2	95	0	1	0	0	1	0	1
class	'4'	0	0	0	0	98	0	0	0	0	2	0
	'5'	0	0	0	1	0	97	0	0	0	0	2
i	'6'	1	0	0	0	0	1	98	0	0	0	0
	י7י	0	0	1	0	0	0	0	98	0	0	1
	'8'	0	0	0	1	0	0	1	0	96	1	1
	'9'	1	0	0	0	3	0	0	0	1	95	0

Useful for characterizing recognition performace Quantifies amount of "confusion" between similar classes

Other classification methods

These utilize the full feature vector for each input

Classification using nearest class mean

Given new input image I, compute the distance (e.g., Euclidean distance) between feature vector $\mathbf{F}_{\mathbf{I}}$ and the mean of each class Choose closest class, if close enough (reject otherwise)

If the class distributions are complex...

Class 2 has two clusters Where is its mean?

Nearest class mean method will likely fail badly in this case

Nearest Neighbor Classification

- Keep all the training samples in some efficient look-up structure
- Find the nearest neighbor of the feature vector to be classified and assign the class of the neighbor
- Can be extended to K nearest neighbors

Idea:

- Look around you to see how your neighbors classify data
- Classify a new data-point according to a *majority vote* of your K nearest neighbors

Example

K = 4: Look at 4 nearest neighbors of + 3 are in C_1 , so classify + as C_1

Decision Boundary using K-NN

K-NN is for girlie men – what about something stronger?

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

The human brain is extremely good at classifying objects in images

Can we develop classification methods by emulating the brain?

Neurons compute using spikes

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

Artificial neuron:

- m binary inputs (-1 or 1) and 1 output (-1 or 1)
- Synaptic weights w_{ji}
- Threshold μ_i

$$v_i = \Theta(\sum_j w_{ji}u_j - \mu_i)$$

 $\Theta(x) = 1$ if x > 0 and -1 if $x \le 0$

"Perceptrons" for Classification

Fancy name for a type of layered "feed-forward" networks (no loops)

Uses artificial neurons ("units") with binary inputs and outputs

Multilayer

Single-layer

Perceptrons and Classification

Consider a single-layer perceptron

• Weighted sum forms a *linear hyperplane*

$$\sum_{j} w_{ji} u_{j} - \mu_{i} = 0$$

Due to threshold function, everything *on one side* of this hyperplane is labeled as class 1 (output = +1) and everything *on other side* is labeled as class 2 (output = -1)

Any function that is <u>linearly separable</u> can be computed by a perceptron

Linear Separability

Example: AND is linearly separable

v = 1 iff $u_1 + u_2 - 1.5 > 0$

Similarly for OR and NOT

What about the XOR function?

Can a straight line separate the +1 outputs from the -1 outputs?

Single-layer perceptron with threshold units fails if classification task is not linearly separable

- Example: XOR
- No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!

Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Multilayer Perceptrons

Removes limitations of single-layer networks

• Can solve XOR

Example: Two-layer perceptron that computes XOR

Output is +1 if and only if $x + y - 2\Theta(x + y - 1.5) - 0.5 > 0$

Multilayer Perceptron: What does it do?

Line defined by first hidden unit

Output region defined by combining hidden unit outputs

Output is 1 if and only if inputs satisfy the two constraints

How do we learn the appropriate weights given only examples of (input,output)?

Idea: Change the weights to decrease the error in ouput

Learning Multilayer Networks

We want networks that can <u>learn to map inputs to outputs</u>

- Assume outputs are real-valued between 0 and 1 (instead of only 0 and 1, or -1 and 1)
 - Can threshold output to decide if class 0, class 1, or Reject
- <u>Idea</u>: Given data, *minimize errors* between network's output and desired output by changing weights

To minimize errors, a *differentiable* output function is desirable (threshold function won't do)

Input

Non-linear "squashing" function: Squashes input to be between 0 and 1. The parameter β controls the slope.

Gradient-Descent Learning ("Hill-Climbing")

Given training examples (\mathbf{u}^m, d^m) (m = 1, ..., N), define a <u>sum</u> <u>of squared output errors function</u> (also called a cost function or "energy" function)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{m} (d^m - v^m)^2$$

where $v^m = g(\mathbf{w}^T \mathbf{u}^m)$

Gradient-Descent Learning ("Hill-Climbing")

Would like to change w so that E(w) is minimized

• Gradient Descent: Change w in proportion to -dE/dw (why?)

$$\mathbf{w} \to \mathbf{w} - \varepsilon \frac{dE}{d\mathbf{w}}$$

"Stochastic" Gradient Descent

What if the inputs only arrive one-by-one?

Stochastic gradient descent approximates sum over all inputs with an "on-line" running sum:

$$\mathbf{w} \to \mathbf{w} - \varepsilon \frac{dE_1}{d\mathbf{w}}$$

$$\frac{dE_1}{d\mathbf{w}} = -(d^m - v^m)g'(\mathbf{w}^T\mathbf{u}^m)\mathbf{u}^m$$
$$\frac{delta}{delta} = \text{error}$$

Also known as the "delta rule" or "LMS (least mean square) rule"

But wait....

What if we have multiple layers?

Enter...the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

Backpropagation: Uppermost layer (delta rule)

$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_{i} - v_{i})^{2}$$

Learning rule for <u>hidden-output weights W</u>:

$$W_{ji} \rightarrow W_{ji} - \mathcal{E} \frac{dE}{dW_{ji}}$$

{gradient descent}

$$\frac{dE}{dW_{ji}} = -(d_i - v_i)g'(\sum_j W_{ji}x_j)x_j \qquad \{\text{delta rule}\}$$

Backpropagation: Inner layer (chain rule)

Example: Learning to Drive

Example Network

Example Network

Training Input $\mathbf{u} = (u_1 \ u_2 \ \dots \ u_{960}) = \text{image pixels}$

Training the network using backprop

Start with random weights W, w

Given input **u**, network produces output **v**

Use backprop to learn W and w that minimize total error over all output units (labeled *i*):

$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_i - v_i)^2$$

Learning to Drive using Backprop

ALVINN (Autonomous Land Vehicle in a Neural Network)

CMU Navlab

Trained using human driver + camera images After learning: Drove up to 70 mph on highway Up to 22 miles without intervention Drove cross-country largely autonomously

(<u>Pomerleau</u>, 1992)

Another Example: Face Detection

Output between -1 (no face) and +1 (face present)

(Rowley, Baluja & Kanade, 1998)

Face Detection Results

(Rowley, Baluja & Kanade, 1998)

Next Time: More Pattern Recognition & Learning

Things to do:

- Work on Project 2
- Vote on Project 1 Artifacts
- Read Chap. 4

