Lecture 9

Pattern Recognition \& Learning

(Rowley, Baluja \& Kanade, 1998)

Motivation: Object Classification

Suppose you are given a dataset of images containing 2 classes of objects

Test Set of Images

Can a computer vision system learn to automatically classify these new images?

Images as Patterns

Binary handwritten characters

00000000010000000000 00000000110000000000 00000000101000000000 00000001000010000000 00000010000010000000 00000100000001000000 00001000000000100000 00001100111111110000 00001111110000010000 00011000000000011000 00010000000000001100 00110000000000000100 00110000000000000110 00100000000000000010 00100000000000000010 01100000000000000010 01000000000000000000 00000000000000000000

Greyscale images

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

Treat an image as a highdimensional vector

(e.g., by reading pixel values

 left to right, top to bottom row)

Pixel value p_{i} can be 0 or 1 (binary image) or 0 to 255 (greyscale)

Feature representation

- Trying to classify raw images directly may be
- inefficient (huge number of pixels N)
- error-prone (raw pixel values not invariant to transformations)
- Better to extract features from the image and use these for classification
- Represent each image I by a vector of features:

$$
\mathbf{F}_{\mathbf{I}}=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n-1} \\
f_{n}
\end{array}\right]
$$

n is typically much smaller than N (though doesn't have to be)

Types of Features: Binary Images

- Features for binary characters ('A’, 'B', ‘C’, ..) could be number of strokes, number of holes, area, etc.
(class)

${ }^{3}{ }^{3}$	medivon	bigh	$3 / 4$	1	3	1/2,2/3	90
'B'	medium	Migh	$3 / 4$	2	1	1/3,1/2	90
${ }^{8} 8$	medium	bigh	2/3	2	0	1/2,1/2	90
${ }^{2} 0$	madium	bigh	2/8	1	0	1/2,1/2	90
${ }^{1} 1$	log	bigh	1/4	0	1	1/2,1/2	90
'W'	Migh	Ligh	1	0	4	1/2,2/3	90
'I'	Ligh	Digh	$3 / 4$	0	2	1/2,1/2	?
'*'	medium	108	1/2	0	0	1/2,1/2	?
-	109	108	2/3	0	1	1/2,1/2	0
$1 /$	108	Digh	2/3	0	1	1/2,1/2	60

Types of Features: Grayscale and Color

- Features for greyscale images could be oriented gradient features, multiscale oriented patches (MOPS), SIFT features, etc.
- Features for color images could be above features applied to R, G, B images, or opponent images (R-G image, $\mathrm{B}-(\mathrm{R}+\mathrm{G}) / 2$ image)

Typical Pattern Recognition System

Pattern recognition or classification problem: Given a training dataset of (input image, output class) pairs, build a classifier that outputs a class for any new input image

Example: Dataset of Binary Character Images

Feature values extracted from input image
mumbr mumbr (ax, cy) bist

medivm	Migh	$3 / 4$	1	3	1/2,2/6	90
medivm	Migh	$3 / 4$	2	1	1/3,1/2	90
mediwn	M1gh	$2 / 3$	2	0	1/2,1/2	90
medivin	High	2/3	1	0	1/2,1/2	90
log	High	1/4	0	1	1/2, $1 / 2$	90
High	Migh	1	0	4	1/2,2/3	90
bigh	high	$3 / 4$	0	2	1/2,1/2	7
medivm	107	$1 / 2$	0	0	1/2,1/2	?
108	108	$2 / 5$	0	1	1/2,1/2	0
108	Migh	2/3	0	1	1/2,1/2	60

${ }^{3}{ }^{3}$
'B'
'8
${ }^{1} 0^{3}$
${ }^{1} 1$
' \mathbf{W}
${ }^{1}$ I'
' ${ }^{\text {\# }}$
? $=$?
$1 /$

Decision Tree

Decision Trees

Input: Description of an object through a set of features or attributes

Output: a decision that is the predicted output value for the input

Advantages:

- Not all features need be evaluated for every input
- Feature extraction may be interleaved with classification decisions
- Can be easy to design and efficient in execution

Feature values can be discrete or continuous

Example: Decision Tree for Continuous Valued Features

Two features $x 1$ and $x 2$ Two output classes 0 and 1

How do we branch using feature values $\mathbf{x} 1$ and $\mathbf{x} 2$ to partition the space correctly?

Example: Decision Tree for Continuous Valued Features

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Decision Tree

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set with one path to leaf for each example

- But most likely won't generalize to new examples

Want to find more compact decision trees (to prevent overfitting and allow generalization)

Decision Tree Learning

Aim: find a small tree consistent with training examples Idea: (recursively) choose "most significant" attribute (feature) as root of (sub)tree and expand
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the classification else if attributes is empty then return MODE (examples) else
best \leftarrow Choose-Attribute(attributes, examples)
tree \leftarrow a new decision tree with root test best
for each value v_{i} of best do
examples $_{i} \leftarrow$ \{elements of examples with best $\left.=v_{i}\right\}$
subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, $\operatorname{MODE}($ examples $\left.)\right)$
add a branch to tree with label v_{i} and subtree subtree
return tree

Choosing an attribute/feature to split on

Idea: a good feature should reduce uncertainty

- E.g., splits the examples into subsets that are (ideally)
"all positive" or "all negative"

Feature 1 is a better choice

Feature 2

Output class probability is still at 50\%.

How do we quantify uncertainty?

Using information theory to quantify uncertainty

Entropy measures the amount of uncertainty in a probability distribution

Entropy (or Information Content) of an answer to a question with possible answers $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$:

$$
\mathrm{I}\left(\mathrm{P}\left(\mathrm{v}_{1}\right), \ldots, \mathrm{P}\left(\mathrm{v}_{\mathrm{n}}\right)\right)=-\Sigma_{\mathrm{i}} \mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right) \log _{2} \mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right)
$$

Using information theory

Imagine we have p examples with Feature $1=1$ or true, and n examples with Feature $1=0$ or false.

Our best estimate of the probabilities of Feature1 = true or false is given by: $P($ true $) \approx p / p+n$

$$
p(f a / s e) \approx n / p+n
$$

Hence the entropy of Feature1 is given by:

$$
I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)=-\frac{p}{p+n} \log _{2} \frac{p}{p+n}-\frac{n}{p+n} \log _{2} \frac{n}{p+n}
$$

Choosing an attribute/feature to split on

Idea: a good feature should reduce uncertainty and result in "gain in information"

How much information do we gain if we disclose the value of some feature?

Answer: uncertainty before - uncertainty after

Example

000000 000000

Feature1

Feature2

Before choosing any feature:
Entropy $=-6 / 12 \log (6 / 12)-6 / 12 \log (6 / 12)$

$$
=-\log (1 / 2)=\log (2)=1 \mathrm{bit}
$$

There is " 1 bit of information to be discovered"

Example

000000
000000
Feature 1

000000
 000000

Feature2

If we choose Feature2: Go along branch "a": we have entropy $=1$ bit; similarly for the others.

Information gain =1-1 = 0 along any branch
If we choose Feature1:
In branch " A " and " B ", entropy $=0$
For "C", entropy $=-2 / 6 \log (2 / 6)-4 / 6 \log (4 / 6)=0.92$
Info gain $=(1-0)$ or (1-0.92) bits >0 in both cases
So choosing Feature1 gains more information!

Entropy across branches

- How do we combine entropy of different branches?
- Answer: Compute average entropy
- Weight entropies according to probabilities of branches

Feature 1

2/12 times we enter " A ", so weight for " A " $=1 / 6$
" B " has weight: $4 / 12=1 / 3$
" C " has weight $6 / 12=\frac{1}{2}$
AvgEntropy $=\sum_{i=1}^{m} \frac{p_{i}+n_{i}}{p+n} \operatorname{Entropy}\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)$
weight for each branch

Information gain

Information Gain (IG) or reduction in entropy from using feature A:
$I G(A)=$ Entropy before - AvgEntropy after choosing A

1. Choose the feature/attribute with the largest IG
2. Create (sub)tree with this feature as root
3. Recursively call the algorithm for each value of feature

Performance Measurement

How do we test the performance of the learned tree?
Answer: Try it on a test set of examples not used in training
Learning curve $=\%$ correct on test set as a function of training set size

Cross-validation

Instead of only 1 subset held out as the test set, better to use Kfold cross-validation:

- Divide data into K subsets of equal size
- Train learning algorithm K times, leaving out one of the subsets. Compute error on left-out subset
- Report average error over all subsets

Leave-1-out cross-validation:

- Train on all but 1 data point, test on that data point; repeat for each point
- Report average error over all points

Confusion matrix

class j output by the pattern recognition system
'0' '1' '2' '3' '4' '5' '6' '7' '8' '9' 'R'

	'0'	97	0	0	0	0	0	1	0	0	1	1
	'1'	0	98	0	0	1	0	0	1	0	0	0
true	'2'	0	0	96	1	0	1	0	1	0	0	1
object	'3'	0	0	2	95	0	1	0	0	1	0	1
class	'4'	0	0	0	0	98	0	0	0	0	2	0
	'5'	0	0	0	1	0	97	0	0	0	0	2
i	'6'	1	0	0	0	0	1	98	0	0	0	0
	'7'	0	0	1	0	0	0	0	98	0	0	1
	'8'	0	0	0	1	0	0	1	0	96	1	1
	'9'	1	0	0	0	3	0	0	0	1	95	0

Useful for characterizing recognition performace Quantifies amount of "confusion" between similar classes

Other classification methods

These utilize the full feature vector for each input

Classification using nearest class mean

Given new input image I, compute the distance (e.g., Euclidean distance) between feature vector $\mathbf{F}_{\mathbf{I}}$ and the mean of each class
Choose closest class, if close enough (reject otherwise)

If the class distributions are complex...

New input point What is its class?

Class 2 has two clusters

Where is its mean?

Nearest class mean method will likely fail badly in this case

Nearest Neighbor Classification

- Keep all the training samples in some efficient look-up structure
- Find the nearest neighbor of the feature vector to be classified and assign the class of the neighbor
- Can be extended to K nearest neighbors

K-Nearest Neighbors

Idea:

- Look around you to see how your neighbors classify data
- Classify a new data-point according to a majority vote of your K nearest neighbors

Example

Input Data: 2-D points (x_{1}, x_{2})
Two classes: C_{1} and C_{2}. New Data Point +

$K=4$: Look at 4 nearest neighbors of +
3 are in C_{1}, so classify + as C_{1}

Decision Boundary using K-NN

K-NN is for girlie men - what about something stronger?

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

The human brain is extremely good at classifying objects in images

Can we develop classification methods by emulating the brain?

Neurons compute using spikes

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

Artificial neuron:

- m binary inputs (-1 or 1) and 1 output (-1 or 1)
- Synaptic weights w_{ji}
- Threshold μ_{i}

$$
\begin{aligned}
& v_{i}=\Theta\left(\sum_{j} w_{j i} u_{j}-\mu_{i}\right) \\
& \Theta(\mathrm{x})=1 \text { if } \mathrm{x}>0 \text { and }-1 \text { if } \mathrm{x} \leq 0
\end{aligned}
$$

Inputs u_{j} (-1 or +1)

"Perceptrons" for Classification

Fancy name for a type of layered "feed-forward" networks (no loops)
Uses artificial neurons ("units") with binary inputs and outputs

Multilayer

Single-layer

Perceptrons and Classification

Consider a single-layer perceptron

- Weighted sum forms a linear hyperplane

$$
\sum_{j} w_{j i} u_{j}-\mu_{i}=0
$$

- Due to threshold function, everything on one side of this hyperplane is labeled as class 1 (output $=+1$) and everything on other side is labeled as class 2 (output $=-1$)
Any function that is linearly separable can be computed by a perceptron

Linear Separability

Example: AND is linearly separable

U_{1}	U_{2}	
-1 -1	-1	
1	-1	-1
-1	1	-1
1	1	1

Similarly for OR and NOT

What about the XOR function?

U_{1}	$\mathrm{U}_{2} \quad$ XOR	
-1	-1	1
1	-1	-1
-1	1	-1
1	1	1

Can a straight line separate the +1 outputs from the -1 outputs?

Linear Inseparability

Single-layer perceptron with threshold units fails if classification task is not linearly separable

- Example: XOR
- No single line can separate the "yes" (+1)
outputs from the "no" (-1) outputs!
Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Multilayer Perceptrons

Removes limitations of single-layer networks

- Can solve XOR

Example: Two-layer perceptron that computes XOR

Output is +1 if and only if $x+y-2 \Theta(x+y-1.5)-0.5>0$

Multilayer Perceptron: What does it do?

Example: Perceptrons as Constraint Satisfaction Networks
Line defined by first hidden unit

Example: Perceptrons as Constraint Satisfaction Networks
Line defined by second hidden unit

Example: Perceptrons as Constraint Satisfaction Networks

Output region defined by combining hidden unit outputs

Example: Perceptrons as Constraint Satisfaction Networks

Output is $\mathbf{1}$ if and only if inputs satisfy the two constraints

How do we learn the appropriate weights given only examples of (input,output)?

Idea: Change the weights to decrease the error in ouput

Learning Multilayer Networks

We want networks that can learn to map inputs to outputs

- Assume outputs are real-valued between 0 and 1 (instead of only 0 and 1 , or -1 and 1)
- Can threshold output to decide if class 0 , class 1 , or Reject
- Idea: Given data, minimize errors between network's output and desired output by changing weights

To minimize errors, a differentiable output function is desirable (threshold function won’t do)

Sigmoidal Networks

The most commonly used differentiable function:

Sigmoid function:

$$
g(a)=\frac{1}{1+e^{-\beta a}}
$$

Non-linear "squashing" function: Squashes input to be between 0 and 1 . The parameter β controls the slope.

Gradient-Descent Learning ("Hill-Climbing")

Given training examples $\left(\mathbf{u}^{m}, d^{m}\right)(m=1, \ldots, N)$, define a sum of squared output errors function (also called a cost function or "energy" function)

$$
E(\mathbf{w})=\frac{1}{2} \sum_{m}\left(d^{m}-v^{m}\right)^{2}
$$

where $v^{m}=g\left(\mathbf{w}^{T} \mathbf{u}^{m}\right)$

Gradient-Descent Learning ("Hill-Climbing")

Would like to change \mathbf{w} so that $E(\mathbf{w})$ is minimized

- Gradient Descent: Change w in proportion to $-\mathrm{d} E / \mathrm{dw}$ (why?)
$\mathbf{w} \rightarrow \mathbf{w}-\varepsilon \frac{d E}{d \mathbf{w}}$
$\frac{d E}{d \mathbf{w}}=-\sum_{m}\left(d^{m}-v^{m}\right) \frac{d v^{m}}{d \mathbf{w}}=-\sum_{m}\left(d^{m}-v^{m}\right) g^{\prime}\left(\mathbf{w}^{T} \mathbf{u}^{m}\right) \mathbf{u}^{m}$
Derivative of sigmoid

"Stochastic" Gradient Descent

What if the inputs only arrive one-by-one?
Stochastic gradient descent approximates sum over all inputs with an "on-line" running sum:

$$
\begin{aligned}
& \mathbf{w} \rightarrow \mathbf{w}-\varepsilon \frac{d E_{1}}{d \mathbf{w}} \\
& \frac{d E_{1}}{d \mathbf{w}}=-\underbrace{\left(d^{m}-v^{m}\right)}_{\text {delta }=\text { error }} g^{\prime}\left(\mathbf{w}^{T} \mathbf{u}^{m}\right) \mathbf{u}^{m}
\end{aligned}
$$

Also known as the "delta rule" or "LMS (least mean square) rule"

But wait....

What if we have multiple layers?

Enter...the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

Backpropagation: Uppermost layer (delta rule)

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning rule for hidden-output weights \mathbf{W} :

$$
\begin{aligned}
& W_{j i} \rightarrow W_{j i}-\varepsilon \frac{d E}{d W_{j i}} \quad\{\text { gradient descent }\} \\
& \frac{d E}{d W_{j i}}=-\left(d_{i}-v_{i}\right) g^{\prime}\left(\sum_{j} W_{j i} x_{j}\right) x_{j} \quad\{\text { delta rule }\}
\end{aligned}
$$

Backpropagation: Inner layer (chain rule)

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning rule for input-hidden weights w:

$$
\begin{aligned}
& w_{k j} \rightarrow w_{k j}-\varepsilon \frac{d E}{d w_{k j}} \quad \text { But }: \frac{d E}{d w_{k j}}=\frac{d E}{d x_{j}} \cdot \frac{d x_{j}}{d w_{k j}} \text { \{chain rule\} } \\
& \frac{d E}{d w_{k j}}=\left[-\sum_{m, i}\left(d_{i}^{m}-v_{i}^{m}\right) g^{\prime}\left(\sum_{j} W_{j i} x_{j}^{m}\right) W_{j i}\right] \cdot\left[g^{\prime}\left(\sum_{k} w_{k j} u_{k}^{m}\right) u_{k}^{m}\right]
\end{aligned}
$$

Example: Learning to Drive

Example Network

(Pomerleau, 1992)

Example Network

Get steering angle from a human driver

Training Output:
$\mathbf{d}=\left(\mathrm{d}_{1} \mathrm{~d}_{2} \ldots \mathrm{~d}_{30}\right)$

Get current camera image

Training Input $\mathbf{u}=\left(\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{960}\right)=$ image pixels

Training the network using backprop

$$
v_{i}=g\left(\sum_{j} W_{j i} g\left(\sum_{k} w_{k j} u_{k}\right)\right)
$$

Start with random weights \mathbf{W}, w

Given input u, network produces output \mathbf{v}

Use backprop to learn \mathbf{W} and \mathbf{w} that minimize total error over all output units (labeled i):

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning to Drive using Backprop

One of the learned "road features" w_{i}

ALVINN (Autonomous Land Vehicle in a Neural Network)

Trained using human driver + camera images After learning:

Drove up to 70 mph on highway
Up to 22 miles without intervention
Drove cross-country largely autonomously

(Pomerleau, 1992)

Another Example: Face Detection

Output between -1 (no face) and +1 (face present)
(Rowley, Baluja \& Kanade, 1998)

Face Detection Results

(Rowley, Baluja \& Kanade, 1998)

Next Time: More Pattern Recognition \& Learning

Things to do:

- Work on Project 2
- Vote on Project 1 Artifacts
- Read Chap. 4

