
Lecture 9
Pattern Recognition & Learning

© UW CSE vision faculty

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/

Motivation: Object Classification

Suppose you are given a dataset of images
containing 2 classes of objects

Test Set of Images

Can a computer vision system learn to automatically classify these
new images?

Images as Patterns

Binary handwritten characters

Greyscale images
62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30

Treat an image as a high-
dimensional vector
(e.g., by reading pixel values
left to right, top to bottom row)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

N

N

p
p

p
p

2

2

1

MI

Pixel value pi can be 0
or 1 (binary image) or
0 to 255 (greyscale)

Feature representation
• Trying to classify raw images directly may be

- inefficient (huge number of pixels N)
- error-prone (raw pixel values not invariant to transformations)

• Better to extract features from the image and use these for
classification

• Represent each image I by a vector of features:

n is typically much smaller than N (though doesn’t have to be)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

n

n

f
f

f
f

1

2

1

MIF

Types of Features: Binary Images
• Features for binary characters (‘A’,

‘B’, ‘C’, ..) could be number of
strokes, number of holes, area, etc.

Types of Features: Grayscale and Color
• Features for greyscale images

could be oriented gradient
features, multiscale oriented
patches (MOPS), SIFT
features, etc.

• Features for color images
could be above features
applied to R, G, B images, or
opponent images (R-G
image, B-(R+G)/2 image)

Typical Pattern Recognition System

Pattern recognition or classification problem: Given a
training dataset of (input image, output class) pairs, build a
classifier that outputs a class for any new input image

Example: Dataset of Binary Character Images

Feature values extracted from input image Class

Decision Tree

#holes

area #strokes #strokes

best axis
direction #strokes

- / 1 * x w 0 A 8 B

0
1

2

Low High

2 4

0 1

0
60

90

0 3
Medium

Feature-
based
decisions

Output

Decision Trees

Input: Description of an object through a set of
features or attributes

Output: a decision that is the predicted output value
for the input

Advantages:
• Not all features need be evaluated for every input
• Feature extraction may be interleaved with

classification decisions
• Can be easy to design and efficient in execution

Feature values can be discrete or continuous

Example: Decision Tree for Continuous Valued Features

x1

x2
Two features x1 and x2
Two output classes 0 and 1

How do we branch using
feature values x1 and x2 to
partition the space
correctly?

Example: Decision Tree for Continuous Valued Features

3

4

Decision Tree

x1

x2

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

Trivially, there is a consistent decision tree for any training set with one
path to leaf for each example
• But most likely won't generalize to new examples

Want to find more compact decision trees (to prevent overfitting and
allow generalization)

Decision Tree Learning
Aim: find a small tree consistent with training examples
Idea: (recursively) choose "most significant" attribute (feature)

as root of (sub)tree and expand

Choosing an attribute/feature to split on
Idea: a good feature should reduce uncertainty

• E.g., splits the examples into subsets that are (ideally)
"all positive" or "all negative"

Feature 1 is a better choice Output class probability
is still at 50%.

Feature 1 Feature 2

A C B a b c d

Positive class inputs Negative class inputs

How do we quantify uncertainty?

Entropy measures the amount of uncertainty in a probability
distribution

Entropy (or Information Content) of an answer to a question
with possible answers v1, … , vn:

I(P(v1), … , P(vn)) = - Σi P(vi) log2 P(vi)

Using information theory to quantify uncertainty

Using information theory
Imagine we have p examples with Feature1 = 1 or true, and
n examples with Feature1 = 0 or false.

Our best estimate of the probabilities of Feature1 = true or
false is given by:

Hence the entropy of Feature1 is given by:

() /
() /

P true p p n
p false n p n

≈ +

≈ +

np
n

np
n

np
p

np
p

np
n

np
pI

++
−

++
−=

++ 22 loglog),(

P(Feature1 = T)

E
nt

ro
py

 I

.00 .50 1.00

1.0

0.5

Entropy is
highest
when
uncertainty
is greatest

Feature1
= T

Feature1
= F

Idea: a good feature should reduce uncertainty and result
in “gain in information”

How much information do we gain if we disclose the
value of some feature?

Answer: uncertainty before – uncertainty after

Choosing an attribute/feature to split on

Example

Before choosing any feature:
Entropy = - 6/12 log(6/12) – 6/12 log(6/12)

= - log(1/2) = log(2) = 1 bit
There is “1 bit of information to be discovered”

Feature1 Feature2

A C B a b c d

Example

If we choose Feature2: Go along branch “a”: we have
entropy = 1 bit; similarly for the others.

Information gain = 1-1 = 0 along any branch
If we choose Feature1:
In branch “A” and “B”, entropy = 0
For “C”, entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92

Info gain = (1-0) or (1-0.92) bits > 0 in both cases
So choosing Feature1 gains more information!

Feature1 Feature2

A C B a b c d

Entropy across branches

• How do we combine entropy of
different branches?

• Answer: Compute average
entropy

• Weight entropies according to
probabilities of branches

2/12 times we enter “A”, so
weight for “A” = 1/6

“B” has weight: 4/12 = 1/3
“C” has weight 6/12 = ½

1
() (,)

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n=

+
=

+ + +∑

weight for each branch
entropy for each branch

AvgEntropy

Feature1

A C B

m

Information gain
Information Gain (IG) or reduction in entropy from using

feature A:

1. Choose the feature/attribute with the largest IG
2. Create (sub)tree with this feature as root
3. Recursively call the algorithm for each value of feature

IG(A) = Entropy before – AvgEntropy after choosing A

Feature F

v1 vkv2
Dataset D ′

Dataset D

repeat
recursively

D′={s∈D | value(F)=v1}

Performance Measurement

How do we test the performance of the learned tree?
Answer: Try it on a test set of examples not used in training
Learning curve = % correct on test set as a function of training

set size

Cross-validation

Instead of only 1 subset held out as the test set, better to use K-
fold cross-validation:
• Divide data into K subsets of equal size
• Train learning algorithm K times, leaving out one of the

subsets. Compute error on left-out subset
• Report average error over all subsets

Leave-1-out cross-validation:
• Train on all but 1 data point, test on that data point; repeat

for each point
• Report average error over all points

Confusion matrix

Useful for characterizing recognition performace
Quantifies amount of “confusion” between similar classes

Other classification methods

These utilize the full feature vector for each input

Classification using nearest class mean
Given new input image I,
compute the distance (e.g.,
Euclidean distance) between
feature vector FI and the
mean of each class
Choose closest class, if close
enough (reject otherwise)

If the class distributions are complex…

Class 2 has two
clusters
Where is its mean?

Nearest class mean
method will likely fail
badly in this case

●

New input point
What is its class?

Nearest Neighbor Classification

• Keep all the training samples in some efficient
look-up structure

• Find the nearest neighbor of the feature vector
to be classified and assign the class of the neighbor

• Can be extended to K nearest neighbors

K-Nearest Neighbors

Idea:
• Look around you to see how your neighbors classify data
• Classify a new data-point according to a majority vote of

your K nearest neighbors

Example
Input Data: 2-D points (x1,x2)

Two classes: C1 and C2. New Data Point +

K = 4: Look at 4 nearest neighbors of +
3 are in C1, so classify + as C1

Decision Boundary using K-NN

Some points
near the
boundary may
be misclassified

K-NN is for girlie
men – what about

something stronger?

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

The human brain is extremely good at classifying
objects in images

Can we develop classification methods by
emulating the brain?

Neurons compute using spikes

Inputs

Output spike
(electrical pulse)

Output spike roughly dependent on whether
sum of all inputs reaches a threshold

Neurons as “Threshold Units”
Artificial neuron:

• m binary inputs (-1 or 1) and 1 output (-1 or 1)
• Synaptic weights wji

• Threshold μi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x > 0 and -1 if x ≤ 0

)(ij
j

jii uwv μ−Θ= ∑

w1i

w2i

w3i

“Perceptrons” for Classification

Fancy name for a type of layered “feed-forward” networks (no loops)

Uses artificial neurons (“units”) with binary inputs and outputs

Multilayer

Single-layer

Perceptrons and Classification

Consider a single-layer perceptron
• Weighted sum forms a linear hyperplane

• Due to threshold function, everything on one side of this
hyperplane is labeled as class 1 (output = +1) and
everything on other side is labeled as class 2 (output = -1)

Any function that is linearly separable can be computed by a
perceptron

0=−∑ ij
j

jiuw μ

Linear Separability

Example: AND is linearly separable

A linear hyperplane
(a line in 2D)

v

u1 u2

μ = 1.5
(1,1)

1

1

-1

-1

u1

u2-1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT

What about the XOR function?

(1,1)

1
1

-1

-1

u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR ?

Can a straight line separate the +1
outputs from the -1 outputs?

Linear Inseparability

Single-layer perceptron with threshold units fails if
classification task is not linearly separable
• Example: XOR
• No single line can separate the “yes” (+1)

outputs from the “no” (-1) outputs!

Minsky and Papert’s book showing
such negative results put a
damper on neural networks
research for over a decade!

(1,1)

1
1

-1

-1

u1

u2

X

How do we deal with linear inseparability?

Multilayer Perceptrons
Removes limitations of single-layer networks

• Can solve XOR
Example: Two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2Θ(x + y – 1.5) – 0.5 > 0
x y

x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1

− ?

Multilayer Perceptron: What does it do?

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=-1

=1

2
1

1
1−

Example: Perceptrons as Constraint Satisfaction Networks

xy
2
11+=

Line defined by first hidden unit

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=-1

=-1=1

=1

1−

2

1−

Example: Perceptrons as Constraint Satisfaction Networks

Line defined by second hidden unit

x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1
1−1

2
1

− -
2
1

− >0

Example: Perceptrons as Constraint Satisfaction Networks

Output region defined by combining hidden unit outputs

x y

out

x

y

1

1

2

1 2

02 <−− yx

0
2
11 >−+ yx

=-1

=-1=1

=1

2
1

1
1− 1−

2

1−

1−1

2
1

−

Example: Perceptrons as Constraint Satisfaction Networks

Output is 1 if and only if inputs satisfy the two constraints

How do we learn the appropriate weights given
only examples of (input,output)?

Idea: Change the weights to decrease the error in ouput

Learning Multilayer Networks
We want networks that can learn to map inputs to outputs

• Assume outputs are real-valued between 0 and 1
(instead of only 0 and 1, or -1 and 1)

– Can threshold output to decide if class 0, class 1, or Reject

• Idea: Given data, minimize errors between network’s
output and desired output by changing weights

To minimize errors, a differentiable
output function is desirable
(threshold function won’t do)

Sigmoidal Networks

Input nodes ae
ag β−+

=
1

1)(

a

Ψ(a)
1

The most commonly used
differentiable function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0
and 1. The parameter β controls the slope.

g(a)

)()(i
i

i
T uwggv ∑== uw

w

u = (u1 u2 u3)T

Output

Gradient-Descent Learning (“Hill-Climbing”)

Given training examples (um,dm) (m = 1, …, N), define a sum
of squared output errors function (also called a cost function
or “energy” function)

2)(
2
1)(m

m

m vdE −= ∑w

)(mTm gv uw=where

Would like to change w so that E(w) is minimized
• Gradient Descent: Change w in proportion to –dE/dw

(why?)

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()(′−−=−−=

−→

∑∑

ε

Derivative of sigmoid

Gradient-Descent Learning (“Hill-Climbing”)

“Stochastic” Gradient Descent
What if the inputs only arrive one-by-one?
Stochastic gradient descent approximates sum over all

inputs with an “on-line” running sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as
the “delta rule”
or “LMS (least
mean square)

rule”
delta = error

But wait….
What if we have multiple layers?

Delta rule can be used to
adapt these weights

How do we adapt these?

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T; Desired = d

Enter…the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

Backpropagation: Uppermost layer (delta rule)

j
j

jjiii
ji

ji
jiji

xxWgvd
dW
dE

dW
dEWW

)()(∑′−−=

−→ ε

{delta rule}

)(j
j

jii xWgv ∑=

ku

jx

Learning rule for hidden-output weights W:

2)(
2
1),(i

i
i vdE −= ∑wW

{gradient descent}

Backpropagation: Inner layer (chain rule)

)(j
j

ji
m
i xWgv ∑=

m
ku

⎥
⎦

⎤
⎢
⎣

⎡ ′⋅⎥
⎦

⎤
⎢
⎣

⎡
′−−=

⋅=−→

∑∑∑ m
k

m
k

k
kjji

j

m
jji

m
i

m
i

imkj

kj

j

jkjkj
kjkj

uuwgWxWgvd
dw
dE

dw
dx

dx
dE

dw
dE

dw
dEww

)()()(

 :But

,

ε {chain rule}

)(m
k

k
kj

m
j uwgx ∑=

Learning rule for input-hidden weights w:

2)(
2
1),(i

i
i vdE −= ∑wW

Example: Learning to Drive

Example Network

(Pomerleau, 1992)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf

Example Network

Training Input u = (u1 u2 … u960) = image pixels

Get steering angle
from a human driver

Get current
camera image

Training Output:
d = (d1 d2 … d30)

Training the network using backprop

2)(
2
1),(i

i
i vdE −= ∑wW

Start with random weights W, w

Given input u, network produces
output v

Use backprop to learn W and w
that minimize total error over all
output units (labeled i):

))((k
k

kj
j

jii uwgWgv ∑∑=

ku

Learning to Drive using Backprop

One of the learned
“road features” wi

ALVINN (Autonomous Land Vehicle in a Neural Network)

(Pomerleau, 1992)

Trained using human
driver + camera images

After learning:
Drove up to 70 mph on
highway
Up to 22 miles without
intervention
Drove cross-country
largely autonomously

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf

Another Example: Face Detection

(Rowley, Baluja & Kanade, 1998)

Output between -1 (no face) and +1 (face present)

http://vasc.ri.cmu.edu/NNFaceDetector/

Face Detection Results

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/

Next Time: More Pattern Recognition & Learning
Things to do:

• Work on Project 2
• Vote on Project 1 Artifacts
• Read Chap. 4

Have a good wekened!

	Lecture 9��Pattern Recognition & Learning
	Images as Patterns
	Feature representation
	Types of Features: Binary Images
	Types of Features: Grayscale and Color
	Typical Pattern Recognition System
	Example: Dataset of Binary Character Images
	Decision Tree
	Decision Trees
	Expressiveness
	Decision Tree Learning
	Choosing an attribute/feature to split on
	How do we quantify uncertainty?
	Using information theory to quantify uncertainty
	Using information theory
	Entropy I
	Choosing an attribute/feature to split on
	Example
	Example
	Entropy across branches
	Information gain
	Performance Measurement
	Cross-validation
	Confusion matrix
	Other classification methods
	Classification using nearest class mean
	If the class distributions are complex…
	Nearest Neighbor Classification
	K-Nearest Neighbors
	Example
	Decision Boundary using K-NN
	The human brain is extremely good at classifying objects in images
	Neurons compute using spikes
	Neurons as “Threshold Units”
	“Perceptrons” for Classification
	Perceptrons and Classification
	Linear Separability
	What about the XOR function?
	Linear Inseparability
	How do we deal with linear inseparability?
	Multilayer Perceptrons
	How do we learn the appropriate weights given only examples of (input,output)?
	Learning Multilayer Networks
	Sigmoidal Networks
	Gradient-Descent Learning (“Hill-Climbing”)
	Gradient-Descent Learning (“Hill-Climbing”)
	“Stochastic” Gradient Descent
	But wait….
	Enter…the backpropagation algorithm
	Backpropagation: Uppermost layer (delta rule)
	Backpropagation: Inner layer (chain rule)
	Example: Learning to Drive
	Example Network
	Example Network
	Training the network using backprop
	Another Example: Face Detection
	Face Detection Results
	Next Time: More Pattern Recognition & Learning

