Lecture 2

Image Processing and Filtering

"Your x-ray showed a broken rib, but we fixed it with Photoshop."

© UW CSE vision faculty

What's on our plate today?

- Image formation
- Image sampling and quantization
- Image interpolation
- Domain transformations
 - Affine image transformations
- Range (intensity) transformations
 - Noise reduction through spatial filtering
 - Filtering as cross-correlation
 - Convolution
 - Nonlinear (median) filtering

Image Formation: Basics

(from Gonzalez & Woods, 2008)

Image Formation: Basics

Image f(x,y) is characterized by 2 components

- 1. Illumination i(x,y) = Amount of source illumination incident on scene
- 2. Reflectance r(x,y) = Amount of illumination reflected by objects in the scene

$$f(x, y) = i(x, y)r(x, y)$$

where

 $0 < i(x, y) < \infty$ and 0 < r(x, y) < 1

r(x,y) depends on object properties

r = 0 means total absorption and 1 means total reflectance

Image Formation: Basics

$$f(x, y) = i(x, y)r(x, y)$$

where

```
0 < i(x, y) < \infty and 0 < r(x, y) < 1
```

Typical values of i(x,y):

- Sun on a clear day: 90,000 lm/m²
- Cloudy day: 10,000 lm/m²
- Inside an office: 1000 lm/m²
- Typical values of r(x,y)
 - Black velvet: 0.01, Stainless steel: 0.65, Snow: 0.93

Typical limits of f(x,y) in an office environment

- 10 < f(x,y) < 1000
- Shifted to gray scale [0, L-1]; 0 = black, L-1 = 255 = white

Sampling and Quantization Process

(from Gonzalez & Woods, 2008)

Example of a Quantized 2D Image

Continuous image projected onto sensor array

Result of sampling and quantization

Suppose we want to zoom an image

Zoomed image

Neared Neighbor Interpolation

Can we do better?

Zoomed image

Other image interpolation techniques

Bilinear interpolation:

Compute pixel value v(x,y) as:

$$v(x, y) = ax + by + cxy + d$$

a, b, c, d determined from **four nearest neighbors** of (x,y)

Bicubic interpolation:

(Used in most commercial image editing programs, e.g., Photoshop)

$$v(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

a_{ij} determined from **16 nearest neighbors** of (x,y)

(from http://www.cambridgeincolour.com/tutorials/image-interpolation.htm)

See also http://en.wikipedia.org/wiki/Bilinear_interpolation

Comparison of Interpolation Techniques

Nearest Neighbor

Bilinear

Bicubic

Recall from Last Time

Domain transformation: $g(x, y) = f(t_x(x, y), t_y(x, y))$ (What is an example?)

Translation

How are these done?

Geometric spatial transformations of images

Two steps:

- 1. Spatial transformation of coordinates (x,y)
- 2. Interpolation of intensity value at new coordinates

We already know how to do (2), so focus on (1)

Example: What does the transformation (x,y) = T((v,w)) = (v/2,w/2) do?

[Shrinks original image in half in both directions]

Affine Spatial Transformations

- Most commonly used set of transformations
- General form:

$$\begin{bmatrix} x & y & 1 \end{bmatrix} = \begin{bmatrix} v & w & 1 \end{bmatrix} \mathbf{T} = \begin{bmatrix} v & w & 1 \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$

- [x y 1] are called homogenous coordinates
- Can translate, rotate, scale, or shear based on values t_{ii}
- Multiple transformations can be concatenated by multiplying them to form new matrix T'

$$\begin{bmatrix} x & y & 1 \end{bmatrix} = \begin{bmatrix} v & w & 1 \end{bmatrix} \mathbf{T} = \begin{bmatrix} v & w & 1 \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$

What does T look like for translation?

$$x = v + t_x$$
$$y = w + t_y$$

Affine Transformations

Transformation	Affine Matrix T	Coordinate Equations	Example
Translation	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$	$\begin{aligned} x &= v + t_x \\ y &= w + t_y \end{aligned}$	
Scaling	$\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{aligned} x &= c_x v\\ y &= c_y w \end{aligned}$	
Rotation	$\begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$	$x = v \cos \theta - w \sin \theta$ $y = v \sin \theta + w \cos \theta$	

Affine Transformations (cont.)

Transformation	Affine Matrix T	Coordinate Equations	Example
Shear (vertical)	$\begin{bmatrix} 1 & 0 & 0 \\ s_v & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{aligned} x &= v + s_v w\\ y &= w \end{aligned}$	
Shear (horizontal)	$\begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{aligned} x &= v\\ y &= s_h v + w \end{aligned}$	7

Example of Affine Transformation

Image rotated 21 degrees

Nearest Neighbor

Recall from last time

Range transformation: g(x, y) = t(f(x, y))(What is an example?)

Noise filtering

Image processing for noise reduction

Common types of noise:

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Impulse noise

Gaussian noise

How do we reduce the effects of noise?

How do we reduce the effects of noise?

		80			

How do we reduce the effects of noise?

Idea: Compute mean value for each pixel from neighbors

Mean filtering

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

F[x,y]

Filtering as cross-correlation

If the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

In our example in previous slide, k = 1 for a 3x3 averaging window

Filtering as cross-correlation

Can generalize this by allowing *different weights for different neighboring pixels*:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called **cross-correlation**, denoted by:

 $G = H \otimes F$

H is called the "filter," "kernel," or "mask."

Note: During implementation, we avoid the negative filter indices by using H[u+k,v+k] instead of H[u,v]

Kernel for mean filtering

What is the kernel for a 3x3 mean filter?

F[x, y]

Kernel for mean filtering

What is the kernel for a 3x3 mean filter?

F[x,y]

Example of mean filtering

Input image

Salt and pepper noise

Filtered Images

Kernel size

Gaussian Filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

Kernel approximates Gaussian function:

What happens if you increase σ ?

Mean versus Gaussian filtering

Filtering an impulse

Filtering an impulse

G[x, y]

What if we want to get an output that looks exactly like the filter kernel?

Flipping kernels

G[x,y]

Convolution

A **convolution** is a cross-correlation where the *filter is flipped both horizontally and vertically* before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

Written as: $G = H \star F$

Compare with cross-correlation:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$$

If H is a Gaussian or mean kernel, how does convolution differ from cross-correlation?

Why convolution?

- Convolution is associative (cross-corr. is not):
 F * (G * I) = (F * G) * I
- Important for efficiency:

To apply two filters F and G sequentially to incoming images I, <u>pre-compute</u> (F * G) and perform only 1 convolution (with pre-computed filter)

 Convolution also allows effects of filtering to be analyzed using Fourier analysis (will touch on this later)

Cross-correlation and template matching

Cross-correlation is useful for *template matching* (locating a given pattern in an image)

Nonlinear filters: Median filter

- A **Median Filter** replaces the value of a pixel by the median of intensity values of neighbors
 - Recall: m is the median of a set of values iff half the values in the set are <= m and half are >= m.
 - Median filtering of image I: For each location (x,y), sort intensity values in its neighborhood, determine median intensity value, and assign that value to I(x,y)
- Is a median filter better than a mean filter?
- Is median filtering a convolution?

Comparison of filters (salt-and-pepper noise)

Comparison of filters (Gaussian noise)

Next Time: Edge detection

- Things to do:
 - Read Chap. 5: Secs. 5.6 5.8, 5.11 and online article by <u>Cipolla & Gee on edge detection</u>
 - Mailing list: <u>cse455@cs.washington.edu</u>
 - Did you receive the first message? Otherwise, sign up
 - Prepare for C/C++ programming
 - Visit Vision and Graphics Lab (Sieg 327)
 - Your ID card should open Sieg 327
 - Check to make sure ASAP

