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Lecture 15

Motion

© UW CSE vision faculty
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Why estimate motion?
We live in a 4-D world (x,y,z,t)!
Wide applications

• Motion detection and object tracking (surveillance etc.)
• Correct for camera jitter (stabilization)
• Align images (panoramic mosaics)
• 3D shape reconstruction (shape from motion)
• Video compression (MPEG)
• Robotics (navigation etc.)
• Entertainment: Special Effects, Sportscasting, Video Games

Slides adapted from Steve Seitz, Linda Shapiro, and others
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Fundamental Problem: Optical flow

Estimate motion vectors at every 
pixel from image sequence
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Another Example
Hamburg Taxi Sequence
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Problem definition:  optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion:  points do not move very far

This is called the optical flow problem
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Optical flow constraints (grayscale images)

Let’s look at these constraints more closely
• brightness constancy:  

• small motion:  (u and v are less than 1 pixel)
– suppose we take the Taylor series expansion of I

H(x, y) = I(x+u, y+v)
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Optical flow equation
Combining these two equations

What is It? The time derivative of the image at (x,y)

x-component of
gradient vector

In the limit as u and v go to zero, this becomes exact
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Optical flow equation

Q:  how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined
• The component of the flow parallel to an edge is unknown

This leads to the Aperture Problem…

1 equation, but 2 unknowns (u and v)
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Aperture problem
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Barber Pole Illusion
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Solving the aperture problem
How to get more equations for a pixel?

• Basic idea:  impose additional constraints

Example:  Assume motion field is smooth locally
Lucas & Kanade:  assume locally constant motion

• pretend the pixel’s neighbors have the same (u,v)
– If we use a 5x5 window, that gives us 25 equations per pixel!

Many other methods exist.  Here’s an overview:
• Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow 

techniques, International Journal of Computer Vision, 12(1):43-77, 1994.

http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.5313
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.5313
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.5313
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Lucas & Kanade:  assume locally constant motion
• assume the pixel’s neighbors have the same (u,v)

– 5x5 window: gives us 25 equations per pixel!

Solving the aperture problem
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Aside: What if we have RGB color images?
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Back to Lucas-Kanade Method
Prob:  we have more equations than unknowns

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lucas & Kanade (1981)

Solution:  solve least squares problem
• minimum least squares solution given by:

bAAAd TT 1)( −=

=
Does this look familiar?

http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
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Conditions for solvability
• Optimal d = (u, v) given by:

When is This Feasible?
• ATA should be invertible 
• ATA should not be too small (noise)

– eigenvalues λ1 and λ2 of ATA should not be too sma
• ATA should be well-conditioned

– Ratio λ1/ λ2 should not be too large (λ1 = larger eigenvalue)

bAAAd TT 1)( −=

Déjà vu?
This is related to our old friend the Harris operator…

ll
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Example motion sequence

This is the famous “flower garden sequence” in computer vision
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Edges may cause problems

– large gradients in one direction
– large λ1, small λ2
– ATA may not be well-conditioned
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Low texture regions may perform badly

– gradients have small magnitude
– small λ1, small λ2
– Solution numerically unstable
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Highly textured regions work best

– gradients are different, large magnitudes
– large λ1, large λ2
– ATA invertible
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Errors in the Lucas-Kanade Method
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When are our assumptions are violated
• Brightness constancy is not satisfied
• A point does not move like its neighbors
• The motion is not small
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• Can solve using, e.g., Newton’s method
– Also known as Newton-Raphson method
– http://en.wikipedia.org/wiki/Newton's_method

Improving accuracy: Beyond small motion
Recall our small motion assumption

This is not exact
• To do better, we need to add higher order terms:

This is a polynomial root finding problem

http://en.wikipedia.org/wiki/Newton's_method
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Iterative Refinement of (u,v)
Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field

- use image warping techniques
3. Repeat until convergence
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Beyond small motion: Take 2

Is the motion between frames small enough?
• Probably not—it’s much larger than one pixel (2nd order 

terms dominate)
• How might we solve this problem without higher-order 

terms?
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Reduce the resolution!
Large motion

Small motion
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

Coarse-to-fine optical flow estimation

run iterative L-K

warp & upsample

.

.

.
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A Few Details
• Top Level

• Apply L-K to get flow field from 1st frame to 2nd frame.
• Apply this flow to warp 1st frame toward 2nd frame.
• Rerun L-K on new warped image to get flow field from it to 

2nd frame.
• Repeat till convergence.

• Next Level
• Upsample flow field to the next level as first guess of flow at 

that level.
• Apply this flow field to warp 1st frame toward 2nd frame.
• Rerun L-K and warping till convergence as above.

• Etc.
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The Flower Garden Video

What should the
optical flow be?

When objects move at equal speed, those 
more remote seem to move more slowly.

Euclid, 300 BC



29

Other Applications: Structure From Motion

Estimated motion (horizontal)

Depth map
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Some frames are encoded in terms of others.

Independent frame encoded as a still image using JPEG

Predicted frame encoded via flow vectors relative to the 
independent frame and difference image.

Between frame encoded using flow vectors and 
independent and predicted frame.

Other Applications: MPEG encoding
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MPEG compression method

F1 is independent.   F4 is predicted.  F2 and F3 are between.

Each 16x16 block of P is matched to its closest match in I and 
represented by a motion vector and a block difference image.

Frames B1 and B2 between I and P are represented using two
motion vectors per block referring to blocks in F1 and F4.
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Other Applications: Scene Dynamics Understanding

• Surveillance
• Event analysis
• Video compression

Estimated horizontal motion

Motion smoothness

Brighter 
pixels =>
larger
speeds.

Motion
boundaries
are smooth.
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Target Detection and Tracking

A tiny airplane --- only 
observable by its distinct 
motion

Tracking results
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Motion tracking
Suppose we have more than two images

• How to track a point through all of the images?

Feature Tracking
• Choose only the points (“features”) that are easily tracked
• You already know about feature detectors and descriptors
• Pick your favorite (e.g., Harris, SIFT) and use for tracking

– In principle, we could estimate motion between each pair of 
consecutive frames

– Given point in first frame, follow arrows in consecutive frames 
to trace out it’s path

– Problem:  DRIFT
» small errors will tend to grow and grow over time—the point will 

drift way off course
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Tracking features
Feature tracking

• Find feature correspondence between consecutive H, I
• Chain these together to find long-range correspondences

When will this go wrong?
• Occlusions—feature may disappear

– need mechanism for deleting, adding new features
• Changes in shape, orientation

– allow the feature to deform
• Changes in color
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Example Application:  Rotoscoping (demo)

Keyframe-Based Tracking for Rotoscoping and Animation
Agarwala et al., SIGGRAPH’04

http://grail.cs.washington.edu/projects/rotoscoping/roto.pdf
http://grail.cs.washington.edu/projects/rotoscoping/roto.pdf
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Next Time: Stereo and 3D Vision

Things to do:
• Work on Project 4
• Read Sec. 12.3 – 12.6
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