
Lecture 10
Pattern Recognition & Learning II
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Flashback: Sigmoidal Networks
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The most commonly used
differentiable function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0 
and 1. The parameter β controls the slope.
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How do we learn the weights?

Given training examples (um,dm) (m = 1, …, N), define a sum 
of squared output errors function (also called a cost function 
or “energy” function)
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How do we learn the weights?

We would like to choose w that minimize E – how?
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Idea: Change w in proportion to –dE/dw
(why does this work?)
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Derivative of sigmoid

Gradient-Descent Learning (“Hill-Climbing”)



“Stochastic” Gradient Descent
What if the inputs only arrive one-by-one?
Stochastic gradient descent approximates sum over all 

inputs with an “on-line” running sum:
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Also known as 
the “delta rule”
or “LMS (least 
mean square) 

rule”
delta = error



Recall from Last Time: Classification Problem

Classification problem: Given a training dataset of (input 
image, output class) pairs, build a classifier that outputs a 
class for any new input image

Image



Example: Face Detection

How do we build a classifier to distinguish 
between faces and other objects?



The Classification Problem

denotes +1 (faces)

denotes -1 (other)Faces

Other objects

Idea: Find a separating hyperplane (line in this case)



Recall from Last Time: Perceptron
Artificial “neuron”:

• Input vector x and output value v
• Weight vector w
• Threshold b
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Perceptron

where sign(z) = +1 if z > 0 and -1 if z ≤ 0
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Equivalently:
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Perceptrons and Classification

• Weighted sum forms a linear hyperplane

• Due to threshold function, everything on one side of this 
hyperplane is labeled as class 1 (output = +1) and 
everything on other side is labeled as class 2 (output = -1)
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Separating Hyperplane

denotes +1 (faces)

denotes -1 (other)Faces

Other objects

Need to choose w and b based on training data
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Separating Hyperplanes

denotes +1 (faces)

denotes -1 (other)Faces

Other objects

Different choices of w and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

http://www.cs.cmu.edu/~awm/tutorials


Which hyperplane is best?

denotes +1 (faces)

denotes -1 (other)Faces

Other objects



How about the one right in the middle?

Intuitively, this boundary 
seems good because it  is 
robust to minor 
perturbations of data 
points near the boundary 
(output does not switch 
from +1 to -1)



Margin

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.



Maximum Margin and Support Vector Machine

The maximum 
margin classifier is 
called a Support 
Vector Machine (in 
this case, a Linear 
SVM or LSVM)

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against



Why Maximum Margin?

• Robust to small 
perturbations of data 
points near boundary

• There exists theory 
showing this is best for 
generalization to new 
points (see online 
tutorial on class 
webpage)

• Empirically works great



Support Vector Machines 
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We can always do this by rescaling
w and b, without affecting the
separating hyperplane:



The margin is given by (see Burges tutorial online): 

Class 1

Class 2

m

Estimating the Margin

Margin can be calculated based on expression for distance from a point to a line, see,
e.g.,  http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html


Learning the Maximum Margin Classifier
Want to maximize margin:

Equivalent to finding w and b that minimize:

Constrained optimization problem that can be solved 
using Lagrange multiplier method
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http://en.wikipedia.org/wiki/Lagrange_multipliers


Learning the Maximum Margin Classifier
Using Lagrange formulation and Lagrangian multipliers αi, 
we get (see Burges tutorial online): 

where the αi are obtained by maximizing:
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This is a quadratic programming (QP) problem
- A global maximum can always be found

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf


α6=1.4

Geometrical Interpretation

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0

xi with non-zero αi  are called support vectors



What if data is not linearly separable?



Approach 1: Soft Margin SVMs

Allow errors ξ i (deviations from 
margin)

Trade off margin with errors.

Minimize:
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-1 1 -1

1 1 1

u1 u2 XOR

Can we do something to the inputs?

What if data is not linearly separable: 
Other Ideas?
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Another Example

Not linearly separable



Approach 2:   Map original input space to higher-dimensional 
feature space; use linear classifier in higher-dim. space

Φ:  x → φ(x)

What if data is not linearly separable?



Φ:  x → φ(x)

Problem with high dimensional spaces

Computation in high-dimensional feature space can be costly
The high dimensional projection function Φ(x) may be too 

complicated to compute
Kernel trick to the rescue!



The Kernel Trick
Recall the SVM optimization problem: Maximize

Insight:
The data points only appear as inner product
• No need to compute φ(x) explictly!
• Just replace inner product xi⋅xj with a kernel function 

K(xi,xj) = φ(xi) ⋅ φ(xj)
• E.g., Gaussian kernel K(xi,xj) =  exp(-||xi-xj||2/2σ2)
• E.g., Polynomial kernel K(xi,xj) = (xi⋅xj+1)d
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An Example for φ(.) and K(.,.)
Suppose φ(.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows, there is no 
need to compute φ(.) explicitly

This use of kernel function to avoid computing φ(.) explicitly 
is known as the kernel trick



Summary: Steps for Classification using SVMs
Prepare the data matrix
Select the kernel function to use
Select parameters of the kernel function

• You can use the values suggested by the SVM software, or use 
cross-validation

Execute the training algorithm and obtain the αi

Classify new data using the learned αi



Face Detection using SVMs

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz


Support Vectors



Another Problem:  Skin Detection

Skin pixels have a distinctive range of colors
• Corresponds to region(s) in RGB color space

– for visualization, only R and G components are shown above 

skin

Skin classifier
• A pixel X = (R,G,B) is skin if it is in the skin region
• But how to find this region?

(This and next few slides adapted from Steve Seitz’s slides)



Skin detection as a classification problem

Learn the skin region from labeled examples
• Manually label pixels in one or more “training images” as skin or not skin
• Plot the training data in RGB space

– skin pixels shown in orange, non-skin pixels shown in blue
– some skin pixels may be outside the region, non-skin pixels inside.  Why?

Skin classifier
• Given X = (R,G,B):  determine if it is skin or not



Skin classification techniques

Possible classification techniques
• Nearest neighbor (or K-NN)

– find labeled pixel closest to X
• Find plane/curve that separates the two classes

– E.g.,  Support Vector Machines (SVM)
• Probabilistic approach

– fit a probability density/distribution model to each class



Probability
Basic probability

• X is a random variable
• P(X) is the probability that X achieves a certain value

•

• or 

• Conditional probability:   P(X | Y)
– probability of X given that we already know Y

continuous X discrete X

called a PDF
-probability distribution/density function



Probabilistic skin classification

Now we can model uncertainty
• Each pixel has a probability of being skin or not skin

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?
• Choose interpretation of highest probability

– set X to be a skin pixel if and only if 

Where do we get                    and                        ? 



Learning conditional PDF’s

We can calculate P(R | skin) from a set of training images
• It is simply a histogram over the pixels in the training images

– each bin Ri contains the proportion of skin pixels with color Ri

This doesn’t work as well in higher-dimensional spaces.  Why not?

Approach:  fit parametric PDF functions 
• common choice is rotated Gaussian 

– center 
– covariance



Learning conditional PDF’s

We can calculate P(R | skin) from a set of training images
• It is simply a histogram over the pixels in the training images

– each bin Ri contains the proportion of skin pixels with color Ri

But this isn’t quite what we want
• Why not?  How to determine if a pixel is skin?
• We want P(skin | R) not P(R | skin)
• How can we get it?



Bayes rule

In terms of our problem:
what we measure

(likelihood)
domain knowledge

(prior)

what we want
(posterior)

normalization term

What could we use for the prior P(skin)?
• Could use domain knowledge

– P(skin) may be larger if we know the image contains a person
– for a portrait, P(skin) may be higher for pixels in the center

• Could learn the prior from the training set.  How?
– P(skin) may be proportion of skin pixels in training set



Bayesian estimation

Bayesian estimation
• Goal is to choose the label (skin or ~skin) that maximizes the posterior

– this is called Maximum A Posteriori (MAP) estimation

likelihood posterior (unnormalized)

= minimize probability of misclassification



Bayesian estimation

Bayesian estimation
• Goal is to choose the label (skin or ~skin) that maximizes the posterior

– this is called Maximum A Posteriori (MAP) estimation

likelihood posterior (unnormalized)

0.5• Suppose the prior is uniform:  P(skin) = P(~skin) = 

= minimize probability of misclassification

– in this case                                          ,
– maximizing the posterior is equivalent to maximizing the likelihood

» if and only if  
– this is called Maximum Likelihood (ML) estimation



Skin detection results

(Jones & Rehg, 1999)

http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-98-11.pdf


Next Time: Color
Things to do:

• Work on Project 2
• Read Chap. 6

Reverand Thomas Bayes
Nonconformist minister

(1702-1761)

Bayes rules!


	Lecture 10��Pattern Recognition & Learning II
	Flashback: Sigmoidal Networks
	How do we learn the weights?
	How do we learn the weights?
	Gradient-Descent Learning (“Hill-Climbing”)
	“Stochastic” Gradient Descent
	Recall from Last Time: Classification Problem
	The Classification Problem
	Recall from Last Time: Perceptron
	Perceptron
	Perceptrons and Classification
	Separating Hyperplane
	Separating Hyperplanes
	Which hyperplane is best?
	How about the one right in the middle?
	Margin
	Maximum Margin and Support Vector Machine
	Why Maximum Margin?
	Support Vector Machines 
	Estimating the Margin
	Learning the Maximum Margin Classifier
	Learning the Maximum Margin Classifier
	Geometrical Interpretation
	What if data is not linearly separable?
	Approach 1: Soft Margin SVMs
	What if data is not linearly separable: �Other Ideas?
	The Kernel Trick
	An Example for f(.) and K(.,.)
	Summary: Steps for Classification using SVMs
	Face Detection using SVMs
	Support Vectors�
	Another Problem:  Skin Detection
	Skin detection as a classification problem
	Skin classification techniques
	Probability
	Probabilistic skin classification
	Learning conditional PDF’s
	Learning conditional PDF’s
	Bayes rule
	Bayesian estimation
	Bayesian estimation
	Skin detection results
	Next Time: Color

