CSE 455
Computer Vision

Rajesh Rao (Instructor)
Jiun-Hung Chen (TA)

http://www.cs.washington.edu/455

© UW CSE vision faculty
What’s on our plate today?

- What is computer vision?
- Examples of current state-of-the-art
- Goals of the course
- Logistics
- Intro to Images & Image Processing
What is computer vision?

Computer vision according to Hollywood
What is computer vision?

Making useful decisions about real physical objects and scenes based on images (Shapiro & Stockman, 2001)

Extracting descriptions of the world from pictures or sequences of pictures (Forsyth & Ponce, 2003)

Analyzing images and producing descriptions that can be used to interact with the environment (Horn, 1986)

Designing representations and algorithms for relating images to models of the world (Ballard & Brown, 1982)
A picture is worth a thousand words

Can a computer infer what happened from the image?
Computer Vision: Current State of the Art

The next few slides show examples of what current computer vision systems can do…
Optical character recognition (OCR)

Technology to convert scanned docs to text

- If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs
http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
Face Detection

Most new digital cameras now detect faces (sometimes badly)
Smile Detection (automatically clicks when you smile!)

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Some unhappy customers
Object Recognition (in supermarkets)

LaneHawk by EvolutionRobotics
“A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it…”
Vision-Based Biometrics

Sharbat Gula at age 12 in an Afghan refugee camp in 1984

Traced in 2002 but is she the same person?
Identity verification through Iris code

“How the Afghan Girl was Identified by Her Iris Patterns” Read the story
Login with your fingerprint or face

Face identification systems now beginning to appear more widely
http://www.sensiblevision.com

Could be a problem if your face changes often

http://www.xmicro.com
Object recognition (in mobile phones)

This is becoming real:

- Lincoln Microsoft Research: Mobile web search via pictures
- Nokia’s Point & Find
3D modeling: Earth viewers

Image from Microsoft’s Virtual Earth
(see also: Google Earth)
http://photosynth.net

Based on Photo Tourism technology developed here in CSE!
by Noah Snavely, Steve Seitz, and Rick Szeliski
Special effects: shape capture

The Burly Brawl scene in *The Matrix Reloaded*
Special effects: motion capture

Pirates of the Caribbean, Industrial Light and Magic
Click here for interactive demo
Sports (http://www.sportvision.com)

- Virtual first down line
 (explanation on www.howstuffworks.com)

- Real-time strike zone box

- Ball tracking

- Virtual Ads!
Smart cars

Mobileye
- Vision systems currently in high-end BMW, GM, Volvo models
- By 2010: 70% of car manufacturers
Vision-based interaction and games

Nintendo Wii has camera-based IR tracking built in. See Lee’s work at CMU on clever tricks on using it to create a multi-touch display!

“Game turns moviegoers into Human Joysticks”, CNET
Camera tracking a crowd, based on this work.

Digimask: put your face on a 3D avatar
Computer vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.
Medical imaging

Image guided surgery
Grimson et al., MIT

3D imaging
MRI
Vision-Based Robotic Learning of Language

Robot learns names for new objects through gaze following

Research done by UW CSE student Aaron Shon
Vision-Guided Brain-Robot Interfaces

[Image of a robot and objects on a floor]

CBS News Article
Current state of the art

You just saw examples of current systems.

- Many of these are less than 5 years old

This is a very active research area, and rapidly changing

- Many new apps in the next 5 years

To learn more about vision applications and companies

- **David Lowe** maintains an excellent overview of vision companies
Goals of the course

• Provide an introduction to computer vision
• Topics to be covered:
 • Image processing and feature detection
 • Image stitching and mosaicing
 • Human vision
 • Pattern recognition & visual learning
 • Object recognition & Image segmentation
 • Motion estimation, color & texture
 • Stereo & 3D vision
 • Applications: content-based image retrieval, tactile graphics, computer vision for Mars exploration
Invited guest lectures

• Jan 29: Prof. Clark Olson (UW Bothell) on “Computer vision for Mars exploration”
Invited guest lectures

• Feb 19: Prof. Linda Shapiro (UW Seattle) on “Content-Based Image Retrieval”
Invited guest lectures

- Mar 5: Prof. Richard Ladner (UW Seattle) on “Tactile Graphics”

Tactile versions (with Braille) of graphical images in *Computer Architecture: A Quantitative Approach* by Hennessy and Patterson.
Projects

1. Image scissors

2. Image stitching

3. Content-based image retrieval

4. Face recognition & detection
Project 1: intelligent scissors

David Dewey, 455 02wi
Project 2: panorama stitching

Oscar Danielsson, 455 06wi
Project 3: Content-Based Image Retrieval
Project 4: Face Recognition & Face Detection

Eigenfaces

Recognition

Detection
Grading

Programming Projects (80%)
 • Image scissors (20%)
 • Panoramas (20%)
 • Content-based image retrieval (20%)
 • Face recognition & detection (20%)

Final (20%)
Prerequisites

The following are essential!

- Data structures
- A good working knowledge of C and C++ programming
 - (or willingness/time to pick it up quickly!)
- Linear algebra
- Vector calculus

Course does not assume prior imaging experience

- computer vision, image processing, graphics, etc.
Okay, let’s begin

What is an image?
What is an image?

Think of an **image** as a function, \(f \), from \(\mathbb{R}^2 \) to \(\mathbb{R} \):

- \(f(x, y) \) gives the **intensity** at position \((x, y) \)
- Realistically, images defined over a rectangle:
 \[
 f: [a,b] \times [c,d] \rightarrow [0,1]
 \]

Color image = three functions pasted together

\[
f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}
\]
An image as a function

Bright regions are high, dark regions are low
Digital images

In computer vision we usually operate on digital (discrete) images:

- **Sample** the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)
- Each sample is a “**pixel**” (picture element)
- If 1 byte for each pixel, values range from 0 to 255
Image processing

An **image processing** operation converts an existing image f to a new image g.

Can transform either the domain or range of f.
Image processing

Range transformation: \(g(x, y) = t(f(x, y)) \)
(What is an example?)

Noise filtering
Image Processing

Domain transformation: \(g(x, y) = f(t_x(x, y), t_y(x, y)) \)
(What is an example?)
Next Time: Image Processing and Filtering

• Things to do:
 • Read Chap 2 & Chap 5: Sec. 5.1-5.5, 5.10
 • Browse class website
 • Mailing list: cse455@cs.washington.edu
 – Did you receive the welcome message? Otherwise, sign up
 • Brush up on C/C++ programming skills
 • Visit Vision and Graphics Lab (Sieg 327)
 – Your ID card should open Sieg 327
 – Check to make sure ASAP

I’ll be back!