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Abstract

With the advent of many large image databases, both
commercial and personal, content-based image retrieval
has become an important research area. While most early
efforts retrieved images based on appearance, it is now
recognized that most users want to retrieve images based
on the objects present in them. This paper addresses the
challenging task of recognizing common objects in color
photographic images. We represent images as sets of
feature vectors of multiple types of abstract regions, which
come from various segmentation processes. We model each
abstract region as a mixture of Gaussian distributions over
its feature space. We have developed a new semi-supervised
version of the EM algorithm for learning the distributions
of the object classes. We use supervisory information to tell
the procedure the set of objects that exist in each training
image, but we do not use any such supervisory information
about where (ie. in which regions) the objects are located
in the images. Instead, we rely on our EM-like algorithm to
break the symmetry in an initial solution that is estimated
with error. Experiments are conducted on a set of 860
images to show the efficacy of our approach.

Keywords: object recognition, abstract regions, mixture
models, EM algorithm.

1. Introduction
Recognizing classes of objects in ordinary color photo-
graphic images is a difficult and challenging problem.
Images may contain many different common objects,
from different viewpoints, and in different arrangements.
In this scenario, alignment-based techniques [4] are not
appropriate, since they are intended for recognizing
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particular objects, and appearance-based techniques that
attempt classification of the entire image [7][10] are also
not suitable. Region-based techniques [1][9][3] require
presegmentation of the image into regions of interest. In
most applications, the reliability of image segmentation
techniques has been a problem for object recognition, but
newer image segmentation algorithms [6][8] that use both
color and texture can now partition an image into regions
that can, in many cases, be identified as classes of natural
objects. Furthermore, a new mid-level feature called a
consistent line cluster [5] can produce regions that often
correspond to man-made structures. Since regions used in
recognition can come from several different segmentation
processes, we will refer to the regions we use in our work
as abstract regions.

The idea behind the abstract region approach is that
all features are image regions, each with its own set of
attributes. The regions we have used to start our work
are color regions and texture regions. We intend to add
other types of abstract regions, including structure regions,
axes of symmetry and major vertical line segments, in
later work. Another possibility for abstract regions are
the square patches selected by an entropy-based feature
detector [11] that were successfully used in a new and
promising approach to object class recognition [2] that
models classes as flexible configurations of parts.

We have developed a new method for object recognition
that uses whole images of abstract regions, rather than sin-
gle regions for classification. A key part of our approach is
that we do not need to know where in each image the objects
lie. We only utilize the fact that objects exist in an image,
not where they are located. We have designed an extended
EM-like procedure that begins by computing an average
feature vector over all regions in all images that contain a
particular object. It relies on the fact that such an average
feature vector is likely to retain attributes of the particular
object, even though the average contains instances of re-
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gions that do not contribute to that object. From these initial
estimates, which are full of errors, the procedure iteratively
re-estimates the parameters to be learned. It is thus able to
compute the probability that object o is in image I given the
set of feature vectors for all the regions of I . This paper
describes our approach and illustrates its use with color and
texture regions. In Section 2 we formalize our approach, in
Section 3 we describe our experiments and results, and in
Section 4 we discuss the implications of the results.

2. Methodology
We are given a set of training images, each containing one
or more object classes, such as grass, trees, sky, houses,
zebras, and so on. Each training image comes with a list
of the object classes that can be seen in that image. There
is no indication of where the objects appear in the images.
We would like to develop classifiers that can train on the
features of the abstract regions extracted from these images
and learn to determine if a given class of object is present
in an image.

Let T be the set of training images and O be a set of m
object classes. Suppose that we have a particular type a of
abstract region (e.g. color) and that this type of region has
a set of na attributes (e.g. (H,S,I)) which have numeric val-
ues. Then any instance of region type a can be represented
by a feature vector of values ra = (v1, v2, . . . , vna). Each
image I is represented by a set F a

I of type a region feature
vectors. Furthermore, associated with each training image
I ∈ T is a set of object labels OI , which gives the name
of each object present in I . Finally, associated with each
object o is the set Ra

o =
⋃

I:o∈OI
F a

I , the set of all type a
regions in training images that contain object class o.

Our approach assumes that each image is a set of re-
gions, each of which can be modeled as a mixture of multi-
variate Gaussian distributions. We assume that the feature
distribution of each object o within a region is a Gaussian
No(µo, Σo), o ∈ O and that the region feature distribution is
a mixture of these Gaussians. We have developed a variant
of the EM algorithm to estimate the parameters of the Gaus-
sians. Our variant is interesting for several reasons. First,
we keep fixed the component responsibilities to the object
priors computed over all images. Secondly, when estimat-
ing the parameters of the Gaussian mixture for a region, we
utilize only the list of objects that are present in an image.
We have no information on the correspondence between im-
age regions and object classes. The vector of parameters to
be learned is:

λ = (µa
o1, . . . , µ

a
om, µa

bg , Σ
a
o1, . . . , Σ

a
om, Σa

bg)

where {µa
oi, Σ

a
oi} are the parameters of the Gaussian for

the ith object class and {µa
bg, Σ

a
bg} are the parameters of an

additional Gaussian for the background. The purpose of the
extra model is to absorb the features of regions that do not
fit well into any of the object models, instead of allowing
them to contribute to, and thus bias, the true object models.
The label bg is added to the set OI of object labels of each
training image I and is thus treated just like the other labels.

The initialization step, rather than assigning random val-
ues to the parameters, uses the label sets of the training im-
ages. For object class o ∈ O and feature type a, the initial
values are

µa
o =

∑

ra∈Ra
o

ra

|Ra
o |

(1)

Σa
o =

∑

ra∈Ra
o

[ra − µa
o ][ra − µa

o ]T

|Ra
o |

(2)

Note that the initial means and covariance matrices most
certainly have errors. For example, the Gaussian mean
for an object in a region is composed of the average
feature vector over all regions in all images that contain
that object. This property will allow subsequent iter-
ations by EM to move the parameters closer to where
they should be. Moreover, by having each mean close
to its true object, each such subsequent iteration should
reduce the strength of the errors assigned to each parameter.

In the E-step of the EM algorithm, we calculate:

p(ra|o, µa
o(t), Σa

o(t)) =

{

0 if o /∈ OI

1√
(2π)na |Σa

o
(t)|

e−
1

2
(ra−µa

o
(t))T Σa

o
(t)(ra−µa

o
(t)) otherwise

(3)

p(o|ra, λ(t)) =
p(ra|o, µa

o(t), Σa
o(t))p(o)

∑

j∈OI
p(ra|j, µa

j (t), Σa
j (t))p(j)

(4)

where p(o) = |{I|o∈OI}|
|T | . Note that when calculating

p(ra|o, µa
o(t), Σa

o(t)) in (3) for region vector ra of image
I and object class o and when normalizing in (4), we use
only the set of object classes of OI , which are known to be
present in I . The M-step follows the usual EM process of
updating µa

o and Σa
o . After multiple iterations of the EM-

like algorithm, we have the final values µa
o and Σa

o for each
object class o and the final probability p(o|ra) for each ob-
ject class o and feature vector ra. Now, given a test image
I we can calculate the probability of object class o being in
image I given all the region vectors ra in I :

p(o|F a
I ) = max

ra∈F a

I

p(o|ra) (5)

We use max instead of sum, because each image has a
different number of regions, and summing will favor classes
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with multiple regions in the same image. This is still for
a single type of abstract region a. We will describe two
methods to handle multiple types of abstract regions in our
experiments.

3. Experiments and Results
Our color regions are produced by a two-step procedure:
1) A K-means variant performs clustering in HSI space.
2) Tiny regions are merged into similarly-colored adjacent
larger ones. Our texture regions come from a color-guided
texture segmentation process. Color segmentation is first
performed, and then pairs of regions are merged if after a
dilation they overlap by more than 50%. Each of the merged
regions is segmented using the K-means variant algorithm
on the Gabor texture coefficients. Figure 1 illustrates the
color and texture regions for two representative images.

Original Color Texture

Figure 1: The abstract regions constructed from a set of rep-
resentative images using color clustering and color-guided
texture clustering.

Since our abstract regions can come from several differ-
ent processes, we must specify how the different attributes
of the different processes will be combined. We have tried
two different forms of combination: 1) treat the different
types of regions independently and combine only at the
time of classification (p(o|{F a

I }) =
∏

a p(o|F a
I )) and 2)

form intersections of the different types of regions and use
them, instead of the original regions, for classification. In
the first case, only the specific attributes of a particular
type of region are used for the respective mixture models.
If a set of regions came from a color segmentation, only
their color attributes (HSI) are used, whereas if they came
from a texture segmentation, only their texture coefficients
are used. In the second case, the intersections are smaller
regions with properties from all the different processes.
Thus an intersection region would have both color attributes
and texture attributes.

Our test database of 860 images was obtained from two
image databases: creatas.com and our groundtruth database

http://www.anonymous. The images are described by 18
keywords. The keywords and their appearance counts are:
mountains (30), orangutan (37), track (40), tree trunk (43),
football field (43), beach (45), prairie grass (53), cherry tree
(53), snow (54), zebra (56), polar bear (56), lion (71), wa-
ter (76), chimpanzee (79), cheetah (112), sky (259), grass
(272), tree (361). We ran a set of cross-validation exper-
iments in each of which 80% of the images were used as
the training set and the other 20% as the test set. Figure 2
illustrates the ROC curves (true positive rate vs. false pos-
itive rate) for each object, treating color and texture inde-
pendently. Figure 3 illustrates the results for the same ob-
jects, using intersections of color and texture regions. In
general, the intersection method achieves better results than
the independent treatment method. This makes sense be-
cause, for example, a single region exhibiting grass color
and grass texture is more likely to be grass than one region
with grass color and another with grass texture. Using inter-
sections, most of the curves show a true positive rate above
80% for false positive rate 30%. The poorest results are on
object classes “tree,” “grass,” and “water,” each of which
has a high variance, for which a single Gaussian model is
not sufficient.

Figure 2: ROC curves for the 18 object classes with inde-
pendent treatment of color and texture.

Figure 4 shows the top three images returned for several
different object classes. The football image is an example
of a false positive for the cherry tree class; the crowd has
roughly the same color and texture as a cherry tree.
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Figure 3: ROC curves for the 18 object classes using inter-
sections of color and texture regions.

4. Conclusions

We have presented a new method for recognizing classes of
objects in color photographic images of outdoor scenes. We
represent images as sets of abstract regions and model each
of these regions as a mixture of Gaussians. We developed a
new semi-supervised EM-like algorithm that is given the set
of objects present in each training image, but does not know
which regions correspond to which objects. Our EM vari-
ant is able to break the symmetry in the initial solution. We
have tested the algorithm on a dataset of 860 hand-labeled
color images. We compared two different methods of com-
bining different types of abstract regions, one that keeps
them independent and one that intersects them. The inter-
section method had a higher performance as shown by the
ROC curves in our paper. While these preliminary results
are promising, they are not yet good enough. Since regions
of high variance are not well modeled by a single Gaus-
sian distribution, we plan to try multiple Gaussians for each
object class and have had some initial success with trees.
Since color and texture are not powerful enough for many
objects, we plan to add structure regions that can help rec-
ognize buildings and other man-made structures. We also
plan to use the spatial relationships among regions, which
is another important factor in recognition. Finally, due to
the large number of possible object classes, we anticipate
the eventual need for a hierarchy of classifiers to handle the
load.

Figure 4: The top 3 test results for cheetah, cherry tree, and
tree.
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