
A Generative/Discriminative Learning Algorithm for Image Classification

Y. Li, L. G. Shapiro, and J. Bilmes
Department of Computer Science and Engineering

Department of Electrical Engineering
University of Washington

Seattle, WA 98195

Abstract

We have developed a two-phase generative/discriminative
learning procedure for the recognition of classes of ob-
jects and concepts in outdoor photographic scenes. Our
method uses both multiple types of object features and con-
text within the image. The generative phase normalizes the
description length of images, which in general can have an
arbitrary number of extracted features of each type. In the
discriminative phase, a classifier learns which images, as
represented by this fixed-length description, contain the tar-
get object. We have tested the approach by comparing it to
several other approaches in the literature and by experi-
menting with several different data sets and combinations
of features. Our results, using color, texture, and structure
features, show a significant improvement over previously
published results in image retrieval. Using salient region
features, we are competitive with recent results in object
recognition.

1. Introduction
Recognition of classes of objects in images and videos is
an important problem in computer vision with applications
in autonomous vehicle navigation, surveillance, aerial
video analysis, and image or video retrieval systems. In the
context of image annotation, image regions from various
segmentations are used for recognizing object classes in
images or videos [5] [10] [16] [2] [6] [7]. Appearance-
based object recognition, which was initially proposed for
recognizing specific objects, has progressed to detection of
instances of object classes [14] [12]. Most of these systems
use formal learning methodologies, such as Bayesian
decision making, neural nets, support vector machines
(discriminative approach) or the EM algorithm (generative
approach). More recently, the learning approach has been
extended by the development of interest operators [9] [4]
[11] that select image windows having patterns that might
be used for recognizing objects and to the ability to learn
constellations of parts that make up a more complex object
[11] [3] [17] [15].

Our goal in this work is to develop a classification
methodology for the automatic annotation of outdoor scene
images. The training data is a set of images, each labeled
with a list of one or more object (or concept) classes that it
contains. There is no information on the locations of these
entities in the image. For each class to be learned, a clas-
sifier is trained to detect instances of that class, regardless
of size, orientation, or location in the image. The solution
that we propose is a generative/discriminative learning pro-
cedure that learns the object or concept classes that appear
in an image from multiple segmentations of pre-annotated
training images. It is significant in several respects:

1. It is able to work with any type of feature that can be
extracted from an image by some automatic segmen-
tation process and represented by a vector of attribute
values. It can work with regions from a color or tex-
ture segmentation, groups of line segments, or small
windows selected by an interest operator.

2. It can work with any number of different feature types
simultaneously. As we will show, the formalism we
developed for a single feature type generalizes easily
to multiple feature types. Thus we can use several fea-
tures types together for a more powerful recognition
system.

3. Like the work of Dorko and Schmid [1] and the more
theoretical paper of Raina et al [13], our method con-
sists of two phases: a generative phase followed by
a discriminative phase. Our method is distinguished
in the elegant framework we use for our discrimina-
tive phase. In particular, although each segmentation
process can produce a variable number of instances of
its features, our methodology produces a fixed-length
description of each image that summarizes the feature
information in a novel way. This allows the discrimi-
native phase to be implemented by standard classifiers
such as neural nets or (linear kernel) support vector
machines.
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Although our work was motivated by the image annota-
tion problem, the learning framework is general and could
also be used as part of an object recognition system.

2 Abstract Regions

Our methodology allows the simultaneous use of multiple
feature types for object recognition. In this paper, we will
refer to the different feature types as abstract regions. Each
type of abstract region a will have a type-a feature vector
Xa containing the attribute values of that region type. Our
learning methodology is general and can handle arbitrary
region-based feature types. We have implemented three
types of abstract regions for our studies: color regions,
texture regions, and structure regions, and have also been
able to incorporate features from other systems into our
learning paradigm. We will briefly describe our own
features here and those of others in the discussions of our
comparison experiments.

Our color regions are produced by a two-step procedure.
The first step is color clustering in the CIELab color space
using a variant of the K-means algorithm. The second step
is an iterative merging procedure that merges multiple tiny
regions into larger ones. The feature vector for a color re-
gion is Xc = [L∗, a∗, b∗], where L∗ is the luminance, and
a∗ and b∗ are the color channels. Our texture regions come
from a color-guided texture segmentation process. Follow-
ing the color segmentation, pairs of regions are merged
if after a small dilation they overlap by more than 50%.
Each of the merged regions is segmented using the same
clustering algorithm on the Gabor texture coefficients. The
feature vector for a texture region is X t = [g1, g2, . . . , g12]
where the gi’s are the Gabor coefficients.

The features we use for recognizing man-made struc-
tures are called structure features and are obtained using
the concept of a consistent line cluster [8]. Line segments
are extracted from an image, and their color pairs (pairs
of colors for which the first is on one side and the second
on the other side of the segment) are computed. The
line segments are clustered first according to their color
pairs, next according to their orientations, and finally
according to their positions in the image to obtain the
structure regions. The feature vector for a structure region
is Xs = [nl, L1, a1, b1, L2, a2, b2, θ, no, mi] where nl

is the number of lines in the region, (L1, a1, b1) and
(L2, a2, b2) are its color pair, θ is its dominant orientation,
no is the number of overlapping line segments, and mi is
the maximum number of intersections of its line segments
with those of another cluster.

original color texture structure

Figure 1: Abstract regions corresponding to color, texture,
and structure segmentations.

Figure 1 illustrates the concept of abstract regions with
color, texture, and structure features. The first image is of
a large building. Regions such as the sky, the concrete,
and the brick section of the building show up as large
homogeneous regions in both color segmentation and
texture segmentation. The windowed part of the building
breaks up into many regions for both the color and the
texture segmentations, but it becomes a single structure
region. The structure-finder also captures a small amount of
structure at the left side of the image. The second image of
a park is segmented into several large regions in both color
and texture. The green trees merge into the green grass
on the right side in the color image, but the texture image
separates them. No structure was found. In the last image
of a sailboat, both the color and texture segmentations
provide some useful regions that will help to identify the
sky, water, trees and sailboat. The sailboat is also captured
in the structure region. It is clear that no one feature type
alone is sufficient to identify all objects. Therefore, a
general purpose image classification system must have the
ability to combine the power of mulitple features.

3. The Generative / Discriminative
Learning Approach

We propose a new two-phase generative/discriminative
learning approach that can learn to recognize objects using
multiple feature types and variable numbers of features of
each type in each image. Phase 1, the generative phase,
is an unsupervised clustering step implemented with the
classical EM algorithm. The clusters are represented by a
multivariate Gaussian mixture model. Phase 1 also includes
an aggregation step that has the effect of normalizing the
description length of images that can have an arbitrary
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number of regions. Phase 2, the discriminative phase, is
a classification step that uses aggregated scores from the
results of Phase 1 to compute the probability that an image
contains a particular object class. It also generalizes to any
number of different feature types in a seamless manner,
making it both simple and powerful.

Our procedure for learning a specific object class o can
be summarized as follows:

1. Generative Step

(a) For each training image Ii and abstract region
type a run the type-a segmentation procedure to
produce a set F a

i = {Xa
i,r|r = 1, . . . , na

i } of
type-a feature vectors representing its regions.

(b) Use the EM algorithm to produce an
Ma-component Gaussian mixture model
to approximate the feature vector dis-
tribution of the object-o training set
T a = ∪i {F

a
i | object o appears in image Ii}.

(c) Use the Gaussian mixture models to derive a
fixed-length aggregated feature vector Vi that
summarizes the content of image Ii in terms
of the components of the models for all feature
types. (See Section 3.1 for the details.)

2. Discriminative Step

(a) Label the aggregated feature vectors from the set
of training images that contain an instance of ob-
ject o with the label 1.

(b) Label the aggregated feature vectors from the set
of training images that do not contain any in-
stances of object o with the label 0.

(c) Train a classifier to distinguish between the
classes 1 and 0. We used multi-layered percep-
trons, but any standard classification algorithm
could be used.

The details of our learning procedure are given below,
first for the single-feature case and then for the extension to
multiple types of features.

3.1. Single-Feature Case
In our framework, each object class is learned separately.
Suppose that we are learning object class o and using feature
type a. In Phase 1, the EM algorithm finds those clusters in
the feature vector space for feature a that are most likely to
appear in images containing object class o. Since the cor-
respondence between regions and objects is unknown, all
of the type a feature vectors from all the training images
containing object o are used. The EM algorithm approxi-
mates the feature vector distribution by a Gaussian mixture

model. Thus the probability of a particular type-a feature
vector Xa appearing in an image containing object o is

P (Xa|o) =

Ma

∑

m=1

wa
m · N(Xa; µa

m, Σa
m)

where N(X, µ, Σ) refers to a multivariate Gaussian distri-
bution over feature vector set X with mean µ and covari-
ance matrix Σ, Ma is the total number of Gaussian com-
ponents, and wa

m is the weight of Gaussian component ma.
Each Gaussian component represents a cluster in the fea-
ture vector space for feature type a that is likely to be found
in the images containing object class o. Figure 2a shows
two positive and two negative training images for the beach
class and the means of eight Gaussian components for the
color feature learned from a set of positive training images.
Note that the mixture for object class o is trained with all
regions of all images that contain o, but these images also
contain many other regions from other object classes. Our
discriminative step (described below) learns how to exploit
this information to predict the presence of the target object.

a. Sample Training Images and Component Means

Beach Class Nonbeach Class
beach1 beach2 nonbch1 nonbch2

Means of 8 Color Components from EM Clustering

b. Aggregated Scores

beach1
beach2

nonbch1
nonbch2









0.93 0.16 0.94 0.24 0.10 0.99 0.32 0.00
0.66 0.80 0.00 0.72 0.19 0.01 0.22 0.02
0.43 0.03 0.00 0.00 0.00 0.00 0.15 0.00
0.15 0.77 0.18 0.02 0.28 0.49 0.12 0.47









Figure 2: a. Two positive and two negative training images
for the beach class and the mean values for the color clusters
produced by the EM clustering algorithm on the full set of
beach training images. b. Feature vectors with aggregated
scores for the two positive and two negative examples using
the max aggregate function and 8 components.

Once the Gaussian components are computed, the likeli-
hood that those components are present in each training im-
age can be calculated. For image Ii and its type-a region r,
let Xa

i,r be the corresponding feature vector. Image Ii will
produce a number of type-a region feature vectors, Xa

i,1,
Xa

i,2, . . . , X
a
i,na

i
. The number na

i of type-a feature vectors
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is the same as that of the type-a regions obtained from the
type-a image segmentation and varies from image to image.
The joint probability of the type-a features of region r and
cluster ma is given by

P (Xa
i,r, m

a) = wa
m · N(Xa

i,r, µ
a
m, Σa

m)

From these probabilities, we compute a summary score in-
dicating the degree to which a component ma explains the
image Ii as:

P (Ii, m
a) = f({P (Xa

i,r, m
a)|r = 1, 2, . . . , na

i })

where f is an aggregate function that combines the evi-
dence from each of the type-a regions in the image. We
have tried max and mean as aggregate functions in our
experiments. Figure 2b shows the feature vectors with the
aggregated scores for the positive and negative training
images of Figure 2a using max as the aggregate function.

Let I+

1
, I+

2
, . . . , be positive training images (images that

contain object o) and I−

1 , I−2 , . . . , be negative training im-
ages. Our Phase 2 algorithm starts by assembling the com-
puted values of P (Ii, m

a) for each image Ii and each type-a
component ma into the following training matrix:

I+

1

I+

2

...
I−1
I−
2

...





















P (I+

1 , 1a) P (I+

1 , 2a) · · · P (I+

1 , Ma)
P (I+

2 , 1a) P (I+

2 , 2a) · · · P (I+

2 , Ma)
...

P (I−1 , 1a) P (I−1 , 2a) · · · P (I−1 , Ma)
P (I−

2
, 1a) P (I−

2
, 2a) · · · P (I−

2
, Ma)

...





















This matrix is used to train a second-stage classifier,
which can implement any standard learning algorithm (sup-
port vector machines, neural networks, etc.) The clas-
sifier will learn how these aggregated scores correspond
to the presence or absence of the object class. For no-
tational purposes, let Y ma

Ii
= P (Ii, m

a) and Y 1
a
:Ma

Ii
=

[Y 1
a

Ii
, Y 2

a

Ii
, · · · , Y Ma

Ii
], which is just one row of the matrix.

The second-stage classifier will learn P (o|Ii) = g(Y 1
a
:Ma

Ii
)

for object class o, image Ii. We use 3-layer feedforward
multi-layered perceptrons (referred to as MLP) in our ex-
periments. The activation function used on the hidden and
output nodes is a sigmoid function. In the test stage, given
a new image Ij and its feature vectors for all type-a re-
gions, the aggregated vector Y 1

a
:Ma

Ij
is calculated and the

second-stage classifier calculates the likelihood that image
Ij contains target object o based on feature type a using the
learned function.

3.2. Multiple-Feature Case
To use multiple features, the generative step is run sepa-
rately for each feature type, producing a separate Gaus-
sian mixture model for each. We will denote the color

feature vectors by Y 1
c
:Mc

Ii
, the texture feature vectors by

Y 1
t
:Mt

Ii
, and the structure feature vectors by Y 1

s
:Ms

Ii
. To

fuse these different information sources, we simply con-
catenate Y 1

c
:Mc

Ii
, Y 1

t
:Mt

Ii
, and Y 1

s
:Ms

Ii
to obtain a new com-

bined feature vector Vi = [Y 1
c
:M

c

Ii
Y 1

t
:M

t

Ii
Y 1

s
:M

s

Ii
] for im-

age Ii.

I+

1

I+

2

...
I−1
I−2
...
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A classifier is then trained on these combined feature
vectors to predict the existence of the target object using
the same method just described for the single-feature
case. The classifier will learn a weighted combination of
components from different feature types that are important
for recognizing the target objects and find the best weights
to combine different feature types automatically.

The two-phase generative/discriminative approach has
several potential advantages over prior approaches. It is
able to combine any number of different feature types
without any modeling assumptions. Regions from different
segmentations do not have to align or to correspond in
any way. Segmentations that produce a sparse set of
features, such as the structure features, can be handled in
exactly the same manner as those whose features cover the
entire image. Our method can learn object classes whose
members have several different appearances, such as trees
or grass. It can also learn high-level concepts or complex
objects composed of several simpler objects, such as a
football stadium, which has green turf, a structural pattern
of white lines, and a red track around it, or a beach which
often has sand, dark blue water, and sky. Finally, since
it learns only one object at a time and does not require
training images to be fully labeled, new training images
with a new object label can be added to an already existent
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training database. A model for this new object class can be
constructed, while the previously-learned models for other
object classes are kept intact.

4. Experiments
Our approach was developed for image annotation in the
image and video retrieval application. For this domain
we ran several sets of experiments in order to 1) test our
two-phase learning approach on several different image
databases, 2) try several different combinations of features,
and 3) compare it to previous approaches in the literature.
We tested our two-phase approach on three local data sets:
a groundtruth database of 1,224 outdoor scene images with
multiple object and concept classes , another local database
of 1,951 images of buses, small buildings, and skyscrap-
ers, and a third database of 828 frames obtained from a set
of aerial videos with 10 object categories. The groundtruth
database and the video frame database were hand-labeled
with multiple labels per image, while the bus, building, and
skyscraper images were assigned to just one category. For
the image annotation task, we compared our two-phase ap-
proach to the ALIP approach of Li and Wang [6] and to the
machine translation approach of Duygulu et al. [2] using
their databases. For the object recognition domain, we com-
pared our approach to the work of Fergus et al [3] and that
of Dorko and Schmidt [1] using the database of airplane,
face, and motorbike images from their work.

4.1. Performance on Groundtruth Data Set
We are interested in images in which the target object can
be anywhere in the image and is not necessarily the main
theme of the image. For example, we want to recognize the
category tree in images whose main theme is house, beach,
or flower, rather than only in images whose main theme is
tree. For this purpose we have constructed a groundtruth
image set containing 1,224 images and growing. The set
includes our own images and those contributed by other
researchers around the world. The whole image set is
free for research purpose and is fully labelled. In the
nonanonymous version of this paper, we will include the
web site.

In the groundtruth image set there are 31 elementary
object categories and 20 high-level concepts represented
in this database. Our qualitative experiments were image
retrievals according to classifier-produced likelihood val-
ues for each of the 51 classes. Figure 3 shows some of
the images that received the highest likelihood scores for
each of four categories: spring flowers, water, parks, and
Italy. Figure 4 shows three representative images from the
groundtruth set and their likelihood scores. In our quanti-

Figure 3: Highest-scoring image retrieval results for sev-
eral categories of the groundtruth data set. Queries are key
words. Row 1: spring flowers; Row 2: water; Row 3: parks;
Row 4: Italy.

tative experiments, the recognition threshold for the output
of the MLP classifier was varied to obtain a set of ROC
curves to display the percentage of true positives vs. false
positives for each object class. The measure of performance
for each class was the percentage of the whole area under
its ROC curve, which ranges from 0 to 100 and which we
will henceforth call a ROC score. Table 1 shows the ROC
scores in ascending order for these categories obtained us-
ing color, texture, and structure features. In general, the
lower scores are obtained for object classes that have both
high variance in appearance and insufficient samples in the
database to learn those variations. We have no feature ex-
pressly designed for recognizing people, so they are recog-
nized mostly by context and the performance is low.

4.2. Performance of the Structure Feature

To more thoroughly investigate the performance of the
structure feature, we created a database of 1,951 images
from freefoto.com including 1,013 images of buses, 609 im-
ages of buildings, and 329 images of skyscrapers. For these
experiments we used the 10 attributes for the structure fea-
ture given in Section 2. We tested the structure feature alone
and combined with the color segmentation feature. Figure
5 shows some images from the structure set and their like-
lihood scores for the three possible labels. Table 2 shows
the ROC scores for the three categories. While the structure
feature did a pretty good job of identifying the categories,
the addition of the regions from a color segmentation of the
whole image improved the identification of the building cat-
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tree (97.3) Italy (99.9) sky (95.1)
bush (91.6) grass (98.5) Iran (89.3)

spr. flowers (90.3) sky (93.8) house (88.6)
flower (84.4) rock (88.8) building (80.1)
park (84.3) boat (80.1) boat (71.7)

sidewalk (67.5) water (77.1) bridge (67.0)
grass (52.5) European (56.3) water (13.5)
pole (34.1) house (5.3) tree (7.7)

Figure 4: Classifier-produced likelihood scores from the
groundtruth data set. For each image, the boldface labels
under it are human annotations, and the nonbold labels are
other high-scoring categories.

egory.

bus (100.0) building (100.0) skyscraper (99.9)
building (58.1) bus (2.79) building (6.8)
skyscraper (1.1) skyscraper (0.04) bus (0.0)

Figure 5: Classifier-produced likelihood scores from the
structure image set. The boldface labels are the human-
identified category.

4.3. Performance on Aerial Video Frames
We also applied our learning framework to recognize ob-
jects in aerial video frames. While tracking can detect ob-
jects in motion, our object recognition system can provide
information about the static objects, such as forest, road,
and field, which are also important in video analysis. The
aerial image set contains 828 video frames. We chose a set
of 10 objects that appeared in at least 30 images for our
experiments; the object classes are airplane, car, dirt road,
field, forest, house, paved road, people, runway and tree.
Several different combinations of color, texture and struc-
ture features were tested within our learning framework.
Sample results are shown in Figure 6. The ROC scores are
given in Table 3. As can be seen, combining all three fea-
tures gives the best performance on half of the objects, but
it is not always the best combination for all objects.

Object Class ROC Score Object Class ROC Score
street 60.4 stone 87.1

people 68.0 hill 87.4
rock 73.5 mountain 88.3
sky 74.1 beach 89.0

ground 74.3 snow 92.0
river 74.7 lake 92.8
grass 74.9 frozen lake 92.8

building 75.4 japan 92.9
cloud 75.4 campus 92.9
boat 76.8 barcelona 92.9

lantern 78.1 geneva 93.3
australia 79.7 park 94.0

house 80.1 spring flowers 94.4
tree 80.8 columbia gorge 94.5
bush 81.0 green lake 94.9

flower 81.1 italy 95.1
iran 82.2 swiss mountains 95.7

bridge 82.7 sanjuans 96.5
car 82.9 cherry tree 96.9
pole 83.3 indoor 97.0

yellowstone 83.7 greenland 98.7
water 83.9 cannon beach 99.2

indonesia 84.3 track 99.6
sidewalk 85.7 football field 99.8
asian city 86.7 stadium 100.0

european city 87.0

Table 1: Groundtruth Experiments

bus building skyscraper
structure 90 79 89

structure + color 92 85 93

Table 2: Structure Experiments (ROC scores)
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Table 3: Learning performance on aerial video image set.
“cs” stands for “color segmentation”, “ts” stands for “tex-
ture segmentation”, and “st” stands for “structure”.
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runway (99.9) car (94.3) car (97.9)
field (98.7) dirt road (91.7) forest (94.2)
car (96.2) field (16.17) paved road (85.0)

dirt road (72.4)
tree (68.8)

Figure 6: Classifier-produced likelihood scores from the
aerial video image set. For each image, the boldface la-
bels are human annotations, and the nonbold labels are other
high-scoring categories.
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Table 4: Comparison to ALIP

4.4. Comparison to the ALIP Algorithm

We measured the performance of our system on the
benchmark image set used by SIMPLIcity [16] and ALIP
[6]. We chose ALIP (which outperformed SIMPLIcity) for
our comparison, because it uses local features, employs
a learning framework, and provides a set of 1000 labeled
images for training and testing. The image set contains
10 categories (100 images each) from the COREL image
database and was carefully selected so that the categories
are distinct and share no description labels.

In ALIP, image feature vectors are extracted from multi-
ple resolution wavelets, and objects are represented by 2D
multiple-resolution hidden Markov models. We applied dif-
ferent combinations of color, texture, and structure features
in our framework; the number of correctly categorized im-
ages are shown in Table 4. The performance of our system
is similar to ALIP using only the color feature, significantly
exceeds ALIP’s performance with the color and structure
features combined, and achieves even better performance
with the combination of color, texture, and structure. This
experiment shows the power of our learning framework and
also the benefit of combining several different image fea-
tures.
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Figure 7: The number of good words vs. the threshold.
Three of the words appeared in more than 15% of the total
images, so that even when the threshold was set to 0, there
were still 3 good words.

4.5. Comparison to Machine Translation
We also compared our two-phase learning approach to
the recent work of Duygulu et al. [2]. In this work,
image regions were treated as one language and the object
labels as another, so the task of annotating images can be
viewed as machine translation. Using their region-based,
33-attribute feature vectors, we extracted 3 color attributes
to form a color feature vector and 12 texture attributes to
form a texture feature vector and combined them in our
Phase 2 learning step. The feature vectors of 5000 Corel
images were provided in the data set. 4500 images were
used as the training set, and 500 images were reserved for
the test set.

In [2] the evaluations were based on recall-precision
pairs from varying a minimum-probability threshold that
controls whether a region predicts a word or not. They char-
acterized their performance by the number of “good words”
with recall value greater than 0.4 and precision value greater
than 0.15 and achieved a high of 14 of the 371 keywords.
We selected 81 keywords, each having at least 50 corre-
sponding images for our tests. In our experiments, we var-
ied from 0 to 1 the threshold that determines from our MLP
output whether an image is positive or negative. Our results
are shown in Figure 7. The number of good words from our
approach was much higher than that from [2], which is a
further endorsement of our generative/discriminative learn-
ing algorithm.

4.6. Comparison to Salient Features Work
In order to test the validity of our approach in the object
recognition domain, we applied it to the airplane, motor-
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Fergus Dorko/Schmid Ours
airplanes 90.2% 96.0% 96.6%

faces 96.4% 96.8% 96.5%
motorbikes 92.5% 98.0% 99.2%

Table 5: Comparisons to Results of [3] and [1]

bike, and face data sets of Fergus et al. [3] using the same
entropy-based salient regions [4]. The data set we used
contains 1074 airplane images, 826 motorbike images,
450 face images, and 900 background images. For each
object category, half of the positive images were used for
training and half were used for testing as in [3]. Fergus’
approach used the EM algorithm to find constellations of
parts and required no negative images in the learning step.
Our discriminative stage requires negative images, so we
added half of the background images to the training set
and left the other half for testing. About 100-300 salient
regions were detected in each image, and SIFT features [9]
were used to represent each by a length-128 feature vector.
This representation is from the recent work of Dorko and
Schmid [1] and differs from that of [3].

A comparison of our experimental results to those of [3]
and [1] are shown in Table 5. Since our algorithm was de-
signed to handle general object classes in outdoor images,
our approach does not explicitely learn spatial configura-
tions that might be helpful for recognizing rigid objects
made of different distinctive parts. However, the results
show that our approach can achieve better performance than
[3] and similar performance to [1] without using the explicit
spatial information.

5. Conclusions and Future Work
We have described a new two-phase genera-
tive/discriminative learning algorithm for object and
concept recognition. The generative phase normalizes
the description length of images, which in general will
have an arbitrary number of abstract region features. The
discriminative step learns which images, as represented
by this fixed-length description, contain the target object.
We have experimented with several different combinations
of features on several different image data sets. We have
compared our new method to the ALIP approach [6] and
to the machine translation approach [2] with favorable
results. We have also shown that our system’s performance
exceeds that of Fergus [3] and is similar to that of Dorko
and Schmid [1] when we use the salient-region features. In
future work we have more experiments planned to compare
different variants of our approach. We are also working
on a probabilistic mechanism for identifying the regions

within an image where the target object is likely to lie.
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