

Matthew Brown and David Lowe, University of British Columbia

Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°

Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$

Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$
 - Panoramic Mosaic = $360 \times 180^{\circ}$

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

Invariant Features

Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars
& Van Gool 2000, Mikolajczyk & Schmid 2001, Brown & Lowe
2002, Matas et. al. 2002, Schaffalitzky & Zisserman 2002

SIFT Features

- Invariant Features
 - Establish invariant frame
 - Maxima/minima of scale-space DOG ⇒ x, y, s
 - Maximum of distribution of local gradients $\Rightarrow \theta$
 - Form descriptor vector
 - Histogram of smoothed local gradients
 - 128 dimensions
- SIFT features are...
 - Geometrically invariant to similarity transforms,
 - some robustness to affine change
 - Photometrically invariant to affine changes in intensity

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

Nearest Neighbour Matching

Nearest neighbour matching

$$\forall j \ NN(j) = \arg\min_{i} ||\mathbf{x}_i - \mathbf{x}_j||, \ i \neq j$$

[Beis Lowe 1997, Nene Nayar 1997, Gray Moore 2000, Shakhnarovich 2003]

- Use k-d tree
 - k-d tree recursively bi-partitions data at mean in the dimension of maximum variance
 - Approximate nearest neighbours found in O(n log n)
- Find k-NN for each feature
 - k ≈ number of overlapping images (we use k = 4)

K-d tree

K-d tree

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
 - RANSAC for Homography
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
 - RANSAC for Homography
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

RANSAC: 1D Line Fitting

RANSAC: 1D Line Fitting

RANSAC: 1D Line Fitting

The RANSAC Algorithm

samplePoints = RandomSample(points);

2D Transforms

• Linear (affine)

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homography

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Finding the panoramas

Finding the panoramas

Finding the panoramas

Finding the panoramas

Connected Components

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

Bundle Adjustment

 Adjust rotation, focal length of each image to minimise error in matched features

Bundle Adjustment

 Adjust rotation, focal length of each image to minimise error in matched features

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Burt & Adelson 1983
 - Blend frequency bands over range $\propto \lambda$

2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

No blending

Linear blending

Each pixel is a weighted sum

$$I^{linear} = \frac{\sum_{i} I^{i} W^{i}}{\sum_{i} W^{i}}$$

Multi-band blending

- Each pixel is a weighted sum (for each band)

$$I_{k\sigma}^{multi} = \frac{\sum_{i} I_{k\sigma}^{i} W_{k\sigma}^{i}}{\sum_{i} W_{k\sigma}^{i}}$$

Linear blending

Multi-band blending

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions

Conclusions

- Fully automatic panoramas
 - A recognition problem...
- Invariant feature based method
 - SIFT features, RANSAC, Bundle Adjustment, Multiband Blending
 - O(nlogn)
- Future Work
 - Advanced camera modelling
 - radial distortion, camera motion, scene motion, vignetting, exposure, high dynamic range, flash
 - Full 3D case recognising 3D objects/scenes in unordered datasets. "PhotoTourism".

http://www.autostitch.net