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Optical Flow-Based Motion Estimation

Thanks to Steve Seitz, Simon Baker, Takeo
Kanade, and anyone else who helped 
develop these slides.
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Why estimate motion?

We live in a 4-D world

Wide applications
• Object Tracking
• Camera Stabilization
• Image Mosaics
• 3D Shape Reconstruction 

(SFM)
• Special Effects (Match 

Move)
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Optical flow
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Problem definition:  optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion:  points do not move very far

This is called the optical flow problem
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Optical flow constraints (grayscale images)

Let’s look at these constraints more closely
• brightness constancy:   Q:  what’s the equation?

• small motion:  (u and v are less than 1 pixel)
– suppose we take the Taylor series expansion of I:

H(x, y) = I(x+u, y+v)
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Optical flow equation
Combining these two equations

The x-component of
the gradient vector.

What is It  ? The time derivative of the image at (x,y)

How do we calculate it?
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Optical flow equation

Q:  how many unknowns and equations per pixel?
1 equation, but 2 unknowns (u and v)

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined
• The component of the flow parallel to an edge is unknown
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Aperture problem
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Aperture problem
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Solving the aperture problem
Basic idea:  assume motion field is smooth

Lukas & Kanade:  assume locally constant motion
• pretend the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel!

Many other methods exist.  Here’s an overview:
• Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow 

techniques, International Journal of Computer Vision, 12(1):43-77, 1994.
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Lukas-Kanade flow
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!
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RGB version
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!



13

Lukas-Kanade flow
Prob:  we have more equations than unknowns

Solution:  solve least squares problem
• minimum least squares solution given by solution (in d) of:

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade (1981)
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Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)
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Edges cause problems

– large gradients, all the same
– large λ1, small λ2
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Low texture regions don’t work

– gradients have small magnitude
– small λ1, small λ2
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High textured region work best

– gradients are different, large magnitudes
– large λ1, large λ2
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Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?
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Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?
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Reduce the resolution!
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Coarse-to-fine optical flow estimation

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels
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Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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A Few Details
• Top Level

• Apply L-K to get a flow field representing the flow from the 
first frame to the second frame.

• Apply this flow field to warp the first frame toward the second 
frame.

• Rerun L-K on the new warped image to get a flow field from 
it to the second frame.

• Repeat till convergence.

• Next Level
• Upsample the flow field to the next level as the first guess of 

the flow at that level.
• Apply this flow field to warp the first frame toward the second 

frame.
• Rerun L-K and warping till convergence as above.

• Etc.
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The Flower Garden Video

What should the
optical flow be?
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Robust Visual Motion Analysis: 
Piecewise-Smooth Optical Flow

Ming YeMing Ye
Electrical Engineering

University of Washington
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Structure From Motion

Rigid scene + camera translation Estimated horizontal motion

Depth map
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Scene Dynamics Understanding

Brighter 
pixels =>
larger
speeds.

Estimated horizontal motion
• Surveillance
• Event analysis
• Video compression

Motion
boundaries
are smooth.

Motion smoothness
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Target Detection and Tracking

Tracking resultsA tiny airplane --- only 
observable by its distinct 
motion
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Problem Statement

Assuming only brightness conservation
and piecewise-smooth motion, find the 
optical flow to best describe the intensity 
change in three frames.



30

Approach: Matching-Based Global 
Optimization

• Step 1.   Robust local gradient-based method for 
high-quality initial flow estimate.

• Step 2.   Global gradient-based method to improve the
flow-field coherence.

• Step 3.   Global matching that minimizes energy by a 
greedy approach.
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Global Energy Design
Global energy ∑ +=
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Advantages

Best of Everything
• Local OFC

– High-quality initial flow estimates
– Robust local scale estimates

• Global OFC
– Improve flow smoothness

• Global Matching
– The optimal formulation
– Correct errors caused by poor gradient quality and hierarchical 

process

Results: fast convergence, high accuracy, simultaneous motion 
boundary detection
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Experiments

• Experiments were run on several standard test videos.

• Estimates of optical flow were made for the middle
frame of every three.

• The results were compared with the Black and
Anandan algorithm.
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TS: Translating Squares
Homebrew, ideal setting, test performance upper bound

Groundtruth (cropped),
Our estimate looks the same

64x64, 1pixel/frame



36

TS: Flow Estimate Plots

BA S1 (S2 is close)LS

S3 looks the same as the groundtruth.

S1, S2, S3: results from our Step I, II, III (final)
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TT: Translating Tree

BA
S3

150x150 (Barron 94)

BA    2.60     0.128    0.0724
S3     0.248   0.0167  0.00984

)(o∠e )(pix||•e )(pixe

e: error in pixels, cdf: culmulative distribution function for all pixels
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DT: Diverging Tree

150x150 (Barron 94)

BA
S3

BA    6.36      0.182      0.114
S3     2.60      0.0813    0.0507

)(o∠e )(pix||•e )(pixe
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YOS: Yosemite Fly-Through

BA    2.71      0.185      0.118
S3     1.92      0.120      0.0776

)(o∠e )(pix||•e )(pixe
BA
S3

316x252 (Barron, cloud excluded)
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TAXI: Hamburg Taxi

256x190, (Barron 94)
max speed 3.0 pix/frame

LMS BA

Error mapOurs Smoothness error
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Traffic

512x512
(Nagel)

max speed:
6.0 pix/frame

BA

Ours Error map Smoothness error
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Pepsi Can

201x201
(Black)

Max speed:
2pix/frame Ours

Smoothness
errorBA
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FG: Flower Garden

360x240 (Black)
Max speed: 7pix/frame

BA LMS

Ours Error map Smoothness error
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MPEG Motion Compression

Some frames are encoded in terms of others.

Independent frame encoded as a still image using JPEG

Predicted frame encoded via flow vectors relative to the 
independent frame and difference image.

Between frame encoded using flow vectors and independent and 
predicted frame.



MPEG compression method
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F1 is independent. F4 is predicted.  F2 and F3 are between.

Each block of I is matched to its closest match in P and 
represented by a motion vector and a block difference image.

Frames B1 and B2 between I and P are represented by two
motion vectors per block referring to blocks in F1 and F4.
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Example of compression

Assume frames are 512 x 512 bytes, or 32 x 32 blocks 
of size 16 x 16 pixels.

Frame A is ¼ megabytes = 250,000 bytes before JPEG

Frame B uses 32 x 32 =1024 motion vectors, or 2048
bytes only if delX and delY are represented as 1 byte 
integers.
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Segmenting videos 

Build video segment database
Scene change is a change of environment: newsroom 

to street
Shot change is a change of camera view of same scene
Camera pan and zoom, as before
Fade, dissolve, wipe are used for transitions
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Scene change
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Detect via histogram change

(Top) gray level histogram of 
intensities from frame 1 in 
newsroom.

(Middle) histogram of 
intensities from frame 2 in 
newsroom.

(Bottom) histogram of 
intensities from street scene.

Histograms change less with 
pan and zoom of same scene.
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Daniel Gatica Perez’s work on
describing video content 
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Our problem: Finding Video Structure

Video Structure: hierarchical description of visual content  
Table of Contents

From thousands of raw frames to video events
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Hierarchical Structure in Video: Extensive Operators

Shots: Consecutive frames recorded from a single camera

Shot

Clusters: Collection of temporally adjacent/visually similar shots

Cluster

Scenes: Semantic Concept. Fair to use?

Scene

Video Sequence

Sequence

Frame
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Daniel’s Approach

TEMPORAL 
PARTITION GENERATION

VIDEO SHOT
FEATURE EXTRACTION

PROBABILISTIC 
HIERARCHICAL CLUSTERING

CONSTRUCTION OF
VIDEO SEGMENT TREE

VIDEO SEQUENCE
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Video Structuring Results (I)

35 shots
9 clusters detected
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Video Structuring Results (II)

12 shots 
4 clusters
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Tree-based Video Representation
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