#### CSE 455: Computer Vision Winter 2007

Instructor: Professor Linda Shapiro (shapiro@cs) Additional Instructor: Dr. Matthew Brown (brown@microsoft.com)

TAs: Masa Kobashi (mkbsh@cs) Peter Davis (pediddle@cs)

Text: Shapiro and Stockman, Computer Vision (chapters available from class web page)

Evaluation: 70% programming projects, 30% exams

#### Topics

- Basics: images, binary operations, filtering, edge operators
- Color, texture, segmentation
- Interest operators: detectors and descriptors
- Use of interest operators: object recognition, stitching, tracking
- Content-based image retrieval
- 2D object recognition
- Motion
- 3D: sensing, camera calibration, reconstruction, recognition

• What IS computer vision?

the analysis of digital images by a computer

• Where do images come from?

#### Applications

• Medical Imaging

#### CT image of a patient's abdomen



#### Visible Man Slice Through Lung



#### 3D Reconstruction of the Blood Vessel Tree



#### Symbolic Shape Descriptors for Classifying Craniosynostosis

## sagittal synostosis metopic synostosis



#### Robotics

#### • 2D Gray-tone or Color Images



#### • 3D Range Images

#### What am I?





#### **Rec**ognition of 3D Object Classes from Range Data



#### Image Databases: Content-Based Retrieval

Images from my Ground-Truth collection.



What categories of image databases exist today?

#### Similarity Retrieval of Brain Data





#### **CBIR of Mouse Eye Images for Genetic Studies**





#### Abstract Regions for Object Recognition

### Original Images Color Regions Texture Regions Line Clusters

#### Insect Identification for Ecology Studies



Calineuria (Cal)





#### Doroneuria (Dor)

#### Yoraperla (Yor)

14

#### **Document Analysis**









Sectore coveries armama / reported allebooks, in tuna la 8

Each

Each

71 12

*(*1.15

71.15

71.18

71.15

71 . 2 71.18

71.9

71 12

71.15

71.19

223.58

#### **Surveillance: Object and Event Recognition in Aerial Videos**



Original Video Frame



#### Color Regions

**Structure Regions** 

#### Video Analysis



What are the objects? What are the events?

#### **3D** Scanning



#### Scanning Michelangelo's "The David"

- The Digital Michelangelo Project
  - http://graphics.stanford.edu/projects/mich/
- UW Prof. Brian Curless, collaborator
- 2 BILLION polygons, accuracy to .29mm



The Digital Michelangelo Project, Levoy et al.







# 







#### Motion Capture, Games



UW Professor: Zoran Popovich works in this area.

# 

#### Effects



#### Andy Serkis, Gollum, Lord of the Rings

#### Imaging

#### Digital Image Terminology:



- binary image
- gray-scale (or gray-tone) image
- color image
- multi-spectral image
- range image
- labeled image

#### Goals of Image and Video Analysis

- Segment an image into useful regions
- Perform measurements on certain areas
- Determine what object(s) are in the scene
- Calculate the precise location(s) of objects
- Visually inspect a manufactured object
- Construct a 3D model of the imaged object
- Find "interesting" events in a video







#### •The Three Stages of Computer Vision

• low-level

image → image

• mid-level

image — → features

• high-level

features — analysis



#### Low-Level

#### sharpening



blurring

#### Low-Level



original image

Canny



euge inia

#### Mid-Level







circular arcs and line segments <sup>31</sup>

edge image

#### Mid-level



#### original color image

K-means clustering (followed by connected component analysis)



#### regions of homogeneous color

data structure

#### Low- to High-Level



#### Imaging and Image Representation

Sensing Process
Typical Sensing Devices
Problems with Digital Images
Image Formats
Relationship of 3D Scenes to 2D Images
Other Types of Sensors

#### Images: 2D projections of 3D

The 3D world has color, texture, surfaces, volumes, light sources, objects, motion, ...
 A 2D image is a projection of a scene from a specific viewpoint.





#### Images as Functions

**\*** A gray-tone image is a function:

g(x,y) = val or f(row, col) = val

\* A color image is just three functions or a vector-valued function:

f(row,col) =(r(row,col), g(row,col), b(row,col))

#### Image vs Matrix

Digital images (or just "images") are typically stored in a matrix.

j



|   |     | →   |     |     |     |     |     |  |
|---|-----|-----|-----|-----|-----|-----|-----|--|
| i | 62  |     |     |     |     |     | 0   |  |
|   | 10  |     |     |     | 12  |     |     |  |
|   | 10  |     | 197 |     |     |     |     |  |
|   | 176 | 135 |     | 188 | 191 |     |     |  |
|   | 2   | 1   | 1   | 29  | 26  | 37  | 77  |  |
|   | 0   |     | 144 | 147 | 187 | 102 | 208 |  |
|   | 255 | 252 |     | 166 | 123 |     | 31  |  |
|   | 166 | 63  | 127 | 17  | 1   |     |     |  |

There are many different file formats.

#### Gray-tone Image as 3D Function









#### **Imaging Process**

- Light reaches surfaces in 3D
- Surfaces reflect
- Sensor element receives light energy
- Intensity counts
- Angles count
- Material counts



What are radiance and irradiance?

#### Radiometry and Computer Vision\*

- **Radiometry** is a branch of physics that deals with the measurement of the flow and transfer of radiant energy.
- **Radiance** is the power of light that is emitted from a unit surface area into some spatial angle; the corresponding photometric term is **brightness**.
- **Irradiance** is the amount of energy that an imagecapturing device gets per unit of an efficient sensitive area of the camera. Quantizing it gives image gray tones.

•From Sonka, Hlavac, and Boyle, *Image Processing, Analysis, and Machine Vision*, ITP, 1999.

#### CCD type camera: Commonly used in industrial applications

- Array of small fixed elements
- Can read faster than TV rates
- Can add refracting elements to get color in 2x2 neighborhoods
- 8-bit intensity common



#### Blooming Problem with Arrays

- Difficult to insulate adjacent sensing elements.
- Charge often leaks from hot cells to neighbors, making bright regions larger.



#### 8-bit intensity can be clipped



- Dark grid intersections at left were actually brightest of scene.
- In A/D conversion the bright values were clipped to lower values.

#### Lens distortion distorts image

 "Barrel distortion" of rectangular grid is common for cheap lenses (\$50)

- Precision lenses can cost \$1000 or more.
- Zoom lenses often show severe distortion.



#### Resolution

• resolution: precision of the sensor

• nominal resolution: size of a single pixel in scene coordinates (ie. meters, mm)

• common use of resolution: num\_rows X num\_cols (ie. 515 x 480)

• subpixel resolution: measurement that goes into fractions of nominal resolution

• field of view (FOV): size of the scene a sensor can sense

#### **Resolution Examples**



C



(b)

(d)

Resolution decreases by one half in cases at left Human faces can be recognized at 64 x 64 pixels per face

#### **Image Formats**

Portable gray map (PGM) older form GIF was early commercial version ■ JPEG (JPG) is modern version Many others exist: header plus data Do they handle color? Do they provide for compression? Are there good packages that use them or at least convert between them?

#### PGM image with ASCII info.

- P2 means ASCII gray
- Comments
- W=16; H=8
- 192 is max intensity
- Can be made with editor
- Large images are usually not stored as ASCII

| P2<br># sample small picture 8 rows of 16 columns, max grey value of 192<br># making an image of the word "Hi" |    |     |     |     |     |     |     |     |    |    |     |     |    |    |    |  |  |
|----------------------------------------------------------------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|----|----|-----|-----|----|----|----|--|--|
| 16 8 192                                                                                                       |    |     |     |     |     |     |     |     |    |    |     |     |    |    |    |  |  |
|                                                                                                                |    |     |     |     |     |     |     |     |    |    |     |     |    |    |    |  |  |
| 64                                                                                                             | 64 | 64  | 64  | 64  | 64  | 64  | 64  | 64  | 64 | 64 | 64  | 64  | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 128 | 128 | 64  | 64  | 64  | 128 | 128 | 64 | 64 | 192 | 192 | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 128 | 128 | 64  | 64  | 64  | 128 | 128 | 64 | 64 | 192 | 192 | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 64 | 64 | 64  | 64  | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 64 | 64 | 128 | 128 | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 128 | 128 | 64  | 64  | 64  | 128 | 128 | 64 | 64 | 128 | 128 | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 128 | 128 | 64  | 64  | 64  | 128 | 128 | 64 | 64 | 128 | 128 | 64 | 64 | 64 |  |  |
| 64                                                                                                             | 64 | 64  | 64  | 64  | 64  | 64  | 64  | 64  | 64 | 64 | 64  | 64  | 64 | 64 | 64 |  |  |



#### PBM/PGM/PPM Codes

- P1: ascii binary (PBM)
- P2: ascii grayscale (PGM)
- P3: ascii color (PPM)

- P4: byte binary (PBM)
- P5: byte grayscale (PGM)
- P6: byte color (PPM)

#### JPG current popular form

- Public standard
- Allows for image compression; often 10:1 or 30:1 are easily possible
- 8x8 intensity regions are fit with basis of cosines
- Error in cosine fit coded as well
- Parameters then compressed with Huffman coding
- Common for most digital cameras

#### From 3D Scenes to 2D Images

- Object
- World
- Camera
- Real Image
- Pixel Image



#### **3D** Sensors

 Laser range finders
 CT, MRI, and ultrasound machines

- Sonar sensors
- Tactile sensors (pressure arrays)
- Structured light sensors

MRA (angiograph) showing blood flow.



Stereo

#### Where do we go next?

So we've got an image, say a single gray-tone image.

What can we do with it?

The simplest types of analysis is binary image analysis.

Convert the gray-tone image to a binary image (0s and 1s) and perform analysis on the binary image, with possible reference back to the original gray tones in a region.