Announcements

- Project 3 questions
- Photos after class

From images to objects

What Defines an Object?

- Subjective problem, but has been well-studied
- Gestalt Laws seek to formalize this
- proximity, similarity, continuation, closure, common fate
- see notes by Steve Joordens, U. Toronto

Image Segmentation
We will consider different methods
Already covered:

- Intelligent Scissors (contour-based, manual)

Today—automatic methods:

- K-means clustering (color-based)
- Normalized Cuts (region-based)

Image histograms

How many "orange" pixels are in this image?

- This type of question answered by looking at the histogram
- A histogram counts the number of occurrences of each color
- Given an image

$$
F[x, y] \rightarrow R G B
$$

- The histogram is defined to be

$$
H_{F}[c]=|\{(x, y) \mid F[x, y]=c\}|
$$

- What is the dimension of the histogram of an NxN RGB image?

What do histograms look like?

Photoshop demo

How Many Modes Are There?

- Easy to see, hard to compute

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
- photoshop demo

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
- photoshop demo

Here's what it looks like if we use two colors

Clustering

How to choose the representative colors?

- This is a clustering problem!

Objective

- Each point should be as close as possible to a cluster center - Minimize sum squared distance of each point to closest center

$$
\sum_{\text {clusters } i} \sum_{\text {points } p \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Break it down into subproblems

Suppose I tell you the cluster centers c

- Q: how to determine which points to associate with each c_{i} ?
- A: for each point p, choose closest c_{i}

Suppose I tell you the points in each cluster

- Q : how to determine the cluster centers?
- A: choose c_{i} to be the mean of all points in the cluster

K-means clustering

K-means clustering algorithm

1. Randomly initialize the cluster centers, $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{K}}$
2. Given cluster centers, determine points in each cluster - For each point p , find the closest c_{i}. Put p into cluster i
3. Given points in each cluster, solve for c_{i}

- Set c_{i} to be the mean of points in cluster i

4. If c_{i} have changed, repeat Step 2

Java demo: http://www.elet.tpolimi.tupload/mateucc/Clustering/tuorial heml/AppletKM.htm

Properties

- Will always converge to some solution
- Can be a "local minimum
- does not always find the global minimum of objective function:

Cleaning up the result

Problem:

- Histogram-based segmentation can produce messy regions
- segments do not have to be connected
- may contain holes

How can these be fixed?

Nested dilations and erosions
What does this operation do?

$$
G=H \ominus(H \oplus F)
$$

- this is called a closing operation

Nested dilations and erosions
What does this operation do?

$$
G=H \ominus(H \oplus F)
$$

- this is called a closing operation

Is this the same thing as the following?

$$
G=H \oplus(H \ominus F)
$$

Nested dilations and erosions
What does this operation do?

$$
G=H \oplus(H \ominus F)
$$

- this is called an opening operation
- http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions
Dilations, erosions, opening, and closing operations are known as morphological operations

- see http://www.dai.ed.ac.uk/HIPR2/morops.htm

Graph-based segmentation?

Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (similarity) - similar pixels should be in the same segments - dissimilar pixels should be in different segments
Cuts in a graph

Link Cut
• set of links whose removal makes a graph disconnected
• cost of a cut:
Find minimum cut $(A, B)=\sum_{p \in A, q \in B} c_{p, q}$
• gives you a segmentation
- fast algorithms exist for doing this

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$
\operatorname{Ncut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(A)}+\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(B)}
$$

- volume $(\mathrm{A})=$ sum of costs of all edges that touch A

