Announcements

- Mailing list: cse455@cs.washington.edu
- you should have received messages
- Office hours online
- start next week
» this week: by appt. only
" next week: Tu 1:30-2:30 slot is cancelled
- Project 1 out today (due in two weeks)
- posted on course web page
- help session today
- Your ID card should open Sieg 327
- check to make sure ASAP

Intelligent Scissors

Approach answers a basic question

- Q: how to find a path from seed to mouse that follows object boundary as closely as possible?
- A: define a path that stays as close as possible to edges

Path Search (basic idea)
Graph Search Algorithm

- Computes minimum cost path from seed to all other pixels

Intelligent Scissors

Basic Idea

- Define edge score for each pixel
- edge pixels have low cost
- Find lowest cost path from seed to mouse

Questions

- How to define costs?
- How to find the path?

Defining the costs
Treat the image as a graph

Want to hug image edges: how to define cost of a link? - the link should follow the intensity edge

- want intensity to change rapidly? to the link
- $\mathrm{c} \approx-\mid$ difference of intensity ? to link|

Defining the costs

H_{c}
c can be computed using a cross-correlation filter

- assume it is centered at p

Also typically scale c by its length

- set C = (max-ffilter response|)
- where max = maximum |filter response| over all pixels in the image

Also typically scale c by its length

- set $\mathrm{c}=($ max-ffilter response|) \times length
- where max = maximum |filter response| over all pixels in the image

Dijkstra's shortest path algorithm

Algorithm

1. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p 's neighbors q that are not expanded
" set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(p)+c_{p q}, \operatorname{cost}(q)\right)$
» if q's cost changed, make q point back to p
" put q on the ACTIVE list (if not already there)
3. set $r=$ node with minimum cost on the ACTIVE list
4. repeat Step 2 for $p=r$

Dijkstra's shortest path algorithm

Properties

- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time if you use an active list
- $O(N \log N)$ if you use an active priority queue (heap)
- takes fraction of a second for a typical (640×480) image
- Once this tree is computed once, we can extract the optimal path from any point to the seed in $\mathrm{O}(\mathrm{N})$ time.
- it runs in real time as the mouse moves
- What happens when the user specifies a new seed?

Help session—Jeff

