Announcements

- Project 2 questions
- · Midterm out on Thursday
 - Take-home, open book/notes, you have a week to do it

Projective geometry

- Readings

 Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1-23.5, 23.10)

 available online: http://www.cs.cmu.edu/-ph/868/papers/zisser-mundy.pdf

Projective geometry—what's it good for?

Uses of projective geometry

- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition

Applications of projective geometry Reconstructions by Criminisi et al.

Solving for homographies $\begin{bmatrix} x_j' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$ $x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$ $y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$ $x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$ $y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$ $\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{20} \\ h_{21} \\ h_{22} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

The projective plane

Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?

• a point in the image is a ray in projective space

• Each point (x,y) on the plane is represented by a ray (sx,sy,s) – all points on the ray are equivalent: (x, y, 1) \equiv (sx, sy, s)

Projective lines

What does a line in the image correspond to in projective space?

A line is a *plane* of rays through origin
 all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation:
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• A line is also represented as a homogeneous 3-vector I

Point and line duality

- A line I is a homogeneous 3-vector
- It is ⊥to every point (ray) p on the line: I p=0

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \ \Rightarrow \ \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• \mathbf{p} is \perp to $\mathbf{I_1}$ and $\mathbf{I_2}$ \Rightarrow $\mathbf{p} = \mathbf{I_1} \times \mathbf{I_2}$

Points and lines are dual in projective space

• given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines

Ideal point ("point at infinity")

- $p \cong (x, y, 0)$ parallel to image plane
- It has infinite image coordinates

Ideal line

- I≅ (a, b, 0) parallel to image plane
- Corresponds to a line in the image (finite coordinates)

Homographies of points and lines

Computed by 3x3 matrix multiplication

- To transform a point: $\mathbf{p'} = \mathbf{H}\mathbf{p}$
- To transform a line: $lp=0 \rightarrow l'p'=0$
 - $-0 = Ip = IH^{-1}Hp = IH^{-1}p' \Rightarrow I' = IH^{-1}$
 - lines are transformed by postmultiplication of H-1

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
 - Projective 3D points have four coords: $\mathbf{P} = (X,Y,Z,W)$
- Duality
 - A plane **N** is also represented by a 4-vector
 - Points and planes are dual in 3D: N P=0
- Projective transformations
 - Represented by 4x4 matrices T: P' = TP, N' = N T-1

3D to 2D: "perspective" projection

What is *not* preserved under perspective projection?

What IS preserved?

Vanishing points

Vanishing point

• projection of a point at infinity

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the *horizon line* also called *vanishing line*
- Note that different planes define different vanishing lines

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
 also called vanishing line
- Note that different planes define different vanishing lines

Computing vanishing points

Properties $v = \Pi P_{\infty}$

- P_∞ is a point at *infinity*, v is its projection
 They depend only on line *direction*Parallel lines P₀ + tD, P₁ + tD intersect at P_∞

Computing vanishing lines

Properties

- I is intersection of horizontal plane through C with image plane
 All points at same height as C project to I
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Fun with vanishing points

Computing (X,Y,Z) coordinates Okay, we know how to compute height (Z coords) • how can we compute X, Y?

3D Modeling from a photograph

Camera calibration

Goal: estimate the camera parameters

Version 1: solve for projection matrix

- · Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_1 = \boldsymbol{\Pi} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T = \boldsymbol{v}_x (X \text{ vanishing point})$
- similarly, $\pi_2 = \mathbf{v}_Y$, $\pi_3 = \mathbf{v}_Z$
- $\pi_4 = \Pi[0 \ 0 \ 0 \ 1]^T = \text{projection of world origin}$

$$\mathbf{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

Not So Fast! We only know v's up to a scale factor

$$\mathbf{\Pi} = \begin{bmatrix} a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & \mathbf{0} \end{bmatrix}$$

• Can fully specify by providing 3 reference points

Calibration using a reference object

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- · must know geometry very accurately
- must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Estimating the projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$$u_i = \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$

$$v_i = \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}Z_i + m_{23}Z_i$$

Direct linear calibration

Can solve for \boldsymbol{m}_{ij} by linear least squares

• use eigenvector trick that we used for homographies

Direct linear calibration

Advantage:

• Very simple to formulate and solve

Disadvantages:

- · Doesn't tell you the camera parameters
- · Doesn't model radial distortion
- · Hard to impose constraints (e.g., known focal length)
- · Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

Minimize E using nonlinear optimization techniques

- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
 - e.g., variants of Newton's method (e.g., Levenberg Marquart)

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouquet, Intel Corp.

Advantage

- Only requires a plane
- · Don't have to know positions/orientations
- · Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/

 - Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Some Related Techniques

Image-Based Modeling and Photo Editing

- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture

- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL TipE.html