Announcements

- Project 2 questions
- Midterm out on Thursday
- Take-home, open book/notes, you have a week to do it

Projective geometry—what's it good for?
Uses of projective geometry

- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition

Solving for homographies

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
& & & 0 & 0 & 1 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]} \\
& \underset{2 n \times 9}{A} \quad \underset{9}{h} \quad \underset{2 n}{0}
\end{aligned}
$$

Defines a least squares problem: minimize $\|\mathrm{Ah}-0\|^{2}$

- Old trick we used in Lucas-Kanade: solve $\mathrm{A}^{\mathrm{T}} \mathrm{Ah}=\mathrm{A}^{\mathrm{T}} \mathbf{0}$
- Problem: this gives a solution of $\mathrm{h}=0$
- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

The projective plane
Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
What is the geometric intuition?
- a point in the image is a ray in projective space

- Each point (x, y) on the plane is represented by a ray $(s x, s y, s)$ - all points on the ray are equivalent: $(x, y, 1) \cong(s x, s y, s)$

Projective lines

What does a line in the image correspond to in projective space?

- A line is a plane of rays through origin
- all rays (x, y, z) satisfying: $a x+b y+c z=0$
in vector notation: $0=\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
I \mathbf{p}
- A line is also represented as a homogeneous 3 -vector I

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p}=0$

What is the line \boldsymbol{I} spanned by rays $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I is the plane normal

What is the intersection of two lines I_{1} and I_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

- given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines

Ideal point ("point at infinity")

- $p \cong(x, y, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- I (a, b, 0) - parallel to image plane
- Corresponds to a line in the image (finite coordinates)

Homographies of points and lines

Computed by 3×3 matrix multiplication

- To transform a point: $\mathbf{p}^{\prime}=\mathbf{H p}$
- To transform a line: $\mathbf{l p}=0 \rightarrow l^{\prime} \mathbf{p}^{\prime}=0$
$-0=\mathbf{l p}=\mathbf{I H} \mathbf{H}^{-1} \mathbf{H p}=\mathbf{I \mathbf { H } ^ { - 1 }} \mathbf{p}^{\prime} \Rightarrow \mathbf{I}^{\prime}=\mathbf{I} \mathbf{H}^{-1}$
- lines are transformed by postmultiplication of \mathbf{H}^{-1}

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(X, Y, Z, W)$
- Duality
- A plane \mathbf{N} is also represented by a 4-vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=0$
- Projective transformations
- Represented by 4×4 matrices $\mathbf{T}: \mathbf{P}^{\prime}=\mathbf{T P}, \quad \mathbf{N}^{\prime}=\mathbf{N}^{\mathbf{T}}{ }^{-1}$

3D to 2D: "perspective" projection

Matrix Projection:

What is not preserved under perspective projection?

What IS preserved?

Vanishing points

Vanishing point

- projection of a point at infinity

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line - also called vanishing line
- Note that different planes define different vanishing lines

Computing vanishing points

Properties $\quad \mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\alpha}$

- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{α}

Computing vanishing lines

Properties

- I is intersection of horizontal plane through \mathbf{C} with image plane
- All points at same height as \mathbf{C} project to I
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Computing vanishing points (from lines)

Intersect $\mathrm{p}_{1} \mathrm{q}_{1}$ with $\mathrm{p}_{2} \mathrm{q}_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

The cross ratio

```
A Projective Invariant
```

- Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$\mathbf{P}_{i}=\left[\begin{array}{c}X_{i} \\ Y_{i} \\ Z_{i} \\ 1\end{array}\right]$
$\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1} \mathbf{P}_{2}\right\| \mathbf{P}_{4}-\mathbf{P}_{3} \|}$
Can permute the point ordering $\quad\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Camera calibration

Goal: estimate the camera parameters

- Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principle point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion

Vanishing points and projection matrix

$\boldsymbol{\Pi}=$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	
$*$	$*$	$*$	$*$	
$\boldsymbol{\pi}_{1}$	$\boldsymbol{\pi}_{2}$	$\boldsymbol{\pi}_{3}$	$\boldsymbol{\pi}_{4}$	$=\left[\begin{array}{llll}\boldsymbol{\pi}_{1} & \boldsymbol{\pi}_{2} & \boldsymbol{\pi}_{3} & \boldsymbol{\pi}_{4}\end{array}\right]$

- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_{2}=\mathbf{v}_{\mathrm{Y}}, \boldsymbol{\pi}_{3}=\mathbf{v}_{\mathrm{Z}}$
- $\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}=$ projection of world origin

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

Not So Fast! We only know v's up to a scale factor

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

- Can fully specify by providing 3 reference points

Calibration using a reference object
Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Estimating the projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct linear calibration

Advantage:

- Very simple to formulate and solve

Disadvantages:

- Doesn't tell you the camera parameters
- Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
- e.g., variants of Newton's method (e.g., Levenberg Marquart)

Alternative: multi-plane calibration

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
- Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
- Matlab version by Jean-Yves Bouget
http://www.vision.caltech.edu/bouguet/calib doc/index.html
- Zhengyou Zhang's web site: http://research.microsoft.com/-zhang/Calib/

Some Related Techniques

Image-Based Modeling and Photo Editing

- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture

- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL TipE.html

