Announcements

- Project 1
- grading session this Thursday $2: 30-5 \mathrm{pm}$, Sieg 327
- signup ASAP:
- 10 minute slot to demo your project for a TA
" have your program running on one of the machines in Sieg 327 at the start
of your session
" the TA may ask to see your code, have it loaded and ready to show
" be prepared to load the test images provided with the skeleton code
") be sure and show the TAs any extra credit items you implemented
- Project 2
- find a partner (just for taking images-coding will be solo)
- Questions about kernel scale factors and offsets

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura

The first camera

- Known to Aristotle
- How does the aperture size affect the image?

Lenses

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Depth of field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus

Digital camera

Issues with digital cameras

Noise

big difference between consumer vs. SLR-style cameras

- low light is where you most notice noise

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

- color fringing artifacts from Bayer patterns

Blooming

- charge overflowing into neighboring pixels

In-camera processing

- oversharpening can produce halos

Interlaced vs. progressive scan video

- even/odd rows from different exposures

Are more megapixels better?

- requires higher quality lens
- noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,

- http://electronics.howstuffworks.com/digital-camera.htm
- http://www.dpreview.com/

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP - Why?
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles (on board)

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{array} \quad(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right] }
\end{aligned}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(\begin{array}{cc}
-d \frac{x}{z}, & \left.-d \frac{y}{z}\right) \\
& \text { divide by third coordinate }
\end{array}\right.
$$

This is known as perspective projection

- The matrix is the projection matrix
- Can also formulate as a 4×4 (today's reading does this)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)
$$

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.} \\
& \left.\left[\begin{array}{c}
\left.-d \frac{y}{z}\right) \\
{\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right]=d \frac{y}{z}\right)
\end{aligned}
$$

Orthographic projection
Special case of perspective projection

- Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(\mathrm{x}, \mathrm{y})$
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Other types of projection

Scaled orthographic

- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

Affine projection

- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($x_{c}^{\prime}, y_{c}^{\prime}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameter
- Useful to decompose into a series of operations
identity matrix
$\boldsymbol{\Pi}=\left[\begin{array}{ccc}-f s_{x} & 0 & x_{c}^{\prime} \\ 0 & -f s_{y} & y_{c}^{\prime} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cc}\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{c}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]$
- The definitions of these parameters are not completely standardized - especially intrinsics-varies from one book to another

Distortion

No distortion

Pin cushion

Barrel

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Modeling distortion

$$
\begin{array}{cl}
\begin{array}{c}
\text { Project }(\hat{x}, \hat{y}, \hat{z}) \\
\text { to "normalized" } \\
\text { image coordinates }
\end{array} & x_{n}^{\prime}=\hat{x} / \hat{z} \\
& y_{n}^{\prime}=\hat{y} / \hat{z} \\
& r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2} \\
\text { Apply radial distortion } & x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& x^{\prime}=f x_{d}^{\prime}+x_{c} \\
\begin{array}{c}
\text { Apply focal length } \\
\text { translate image center }
\end{array} & y^{\prime}=f y_{d}^{\prime}+y_{c}
\end{array}
$$

To model lens distortion

- Use above projection operation instead of standard projection matrix multiplication

