#### Announcements

- Midterm due now
- Project 3 out today
  - demo session at the end of class

#### Photometric Stereo



Merle Norman Cosmetics, Los Angeles

#### Readings

- Forsyth and Ponce, section 5.4
  - online: http://www.cs.berkeley.edu/~daf/bookpages/pdf/chap05-final.pdf

### Diffuse reflection





$$R_e = k_d \mathbf{N} \cdot \mathbf{L} R_i$$
 image intensity of P  $\longrightarrow I = k_d \mathbf{N} \cdot \mathbf{L}$ 

#### Simplifying assumptions

- I = R<sub>e</sub>: camera response function f is the identity function:
  - can always achieve this in practice by solving for f and applying f  $^{\text{-}1}$  to each pixel in the image
- R<sub>i</sub>= 1: light source intensity is 1
  - can achieve this by dividing each pixel in the image by R<sub>i</sub>

### Shape from shading



Suppose 
$$k_d = 1$$
 
$$I = k_d \mathbf{N} \cdot \mathbf{L}$$
 
$$= \mathbf{N} \cdot \mathbf{L}$$
 
$$= \cos \theta_i$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
  - assume a few of the normals are known (e.g., along silhouette)
  - constraints on neighboring normals—"integrability"
  - smoothness
- Hard to get it to work well in practice
  - plus, how many real objects have constant albedo?

#### Photometric stereo







$$I_1 = k_d \mathbf{N} \cdot \mathbf{L}_1$$
  
 $I_2 = k_d \mathbf{N} \cdot \mathbf{L}_2$   
 $I_3 = k_d \mathbf{N} \cdot \mathbf{L}_3$ 

Can write this as a matrix equation:

$$\begin{bmatrix} I_1 & I_2 & I_3 \end{bmatrix} = k_d \mathbf{N}^T \begin{bmatrix} \mathbf{L_1} & \mathbf{L_2} & \mathbf{L_3} \end{bmatrix}$$

### Solving the equations

$$\left[\begin{array}{ccc} I_1 & I_2 & I_3 \end{array}\right] = \underbrace{k_d \mathbf{N}^T}_{\mathbf{1} \times \mathbf{3}} \left[\begin{array}{ccc} \mathbf{L}_1 & \mathbf{L}_2 & \mathbf{L}_3 \end{array}\right]$$

$$G = IL^{-1}$$

$$k_d = \|\mathbf{G}\|$$

$$N = \frac{1}{k_d}G$$

## More than three lights

Get better results by using more lights

$$\left[\begin{array}{ccc}I_1&\ldots&I_n\end{array}\right]=k_d\mathbf{N}^T\left[\begin{array}{ccc}\mathbf{L_1}&\ldots&\mathbf{L_n}\end{array}\right]$$

Least squares solution:

$$I = GL$$

$$IL^{T} = GLL^{T}$$

$$G = (IL^{T})(LL^{T})^{-1}$$

Solve for N,  $k_{\rm d}$  as before

What's the size of LLT?

## Color images

The case of RGB images

• get three sets of equations, one per color channel:

$$\mathbf{I}_R = k_{dR} \mathbf{N}^T \mathcal{L}$$
 call this J  $\mathbf{I}_G = k_{dG} \mathbf{N}^T \mathcal{L}$  What's the size of J?

- Simple solution: first solve for N using one channel
- Then substitute known  ${\bf N}$  into above equations to get  ${\bf k}_{\rm d}$  s:

$$\begin{aligned} \mathbf{I}_{R} &= k_{dR}\mathbf{J} \\ \mathbf{J} \cdot \mathbf{I}_{R} &= k_{dR}\mathbf{J} \cdot \mathbf{J} \\ k_{dR} &= \frac{\mathbf{J} \cdot \mathbf{I}_{R}}{\mathbf{J} \cdot \mathbf{J}} \end{aligned}$$

## Computing light source directions

Trick: place a chrome sphere in the scene





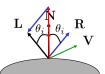




· the location of the highlight tells you where the light source is

### Recall the rule for specular reflection

For a perfect mirror, light is reflected about N



$$\mathbf{R}_e = \begin{cases} R_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

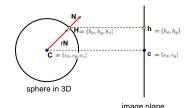
We see a highlight when  $\mathbf{V} = \mathbf{R}$ 

• then L is given as follows:

$$L = 2(N \cdot R)N - R$$

## Computing the light source direction

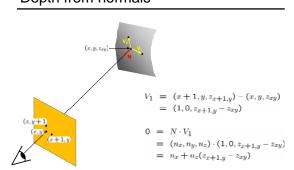
Chrome sphere that has a highlight at position **h** in the image



#### Can compute ${\bf N}$ by studying this figure

- Hints:
  - use this equation:  $\|H-C\|=r$
  - $-\,$  can measure  $\boldsymbol{c},\,\boldsymbol{h},$  and r in the image

### Depth from normals



Get a similar equation for V2

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation (project 3)

# Project 3





### Limitations

## Big problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

#### Smaller problems

- camera and lights have to be distant
- calibration requirements
  - measure light source directions, intensities
  - camera response function

## Trick for handling shadows

Weight each equation by the pixel brightness:

$$I_i(I_i) = I_i[k_d \mathbf{N} \cdot \mathbf{L_i}]$$

Gives weighted least-squares matrix equation:

$$\left[\begin{array}{ccc} I_1^2 & \dots & I_n^2 \end{array}\right] = k_d \mathbf{N}^T \left[\begin{array}{ccc} I_1 \mathbf{L}_1 & \dots & I_n \mathbf{L}_n \end{array}\right]$$

Solve for N, k<sub>d</sub> as before