Announcements

- Midterm due now
- Project 3 out today
- demo session at the end of class

Photometric Stereo

Readings

- Forsyth and Ponce, section 5.4
- online: http://muw.cs.berkeley.edu/-daf/bookpages/pdf/chap05-final.pdf

Diffuse reflection

$$
R_{e}=k_{d} \mathbf{N} \cdot \mathbf{L} R_{i}
$$

image intensity of $\mathrm{P} \longrightarrow I=k_{d} \mathrm{~N} \cdot \mathrm{~L}$
Simplifying assumptions

- $I=R_{e}$: camera response function f is the identity function: - can always achieve this in practice by solving for f and applying f^{-1} to each pixel in the image
- $R_{i}=1$: light source intensity is 1
- can achieve this by dividing each pixel in the image by R_{i}

Shape from shading

Suppose $k_{d}=1$	
I	$=k_{d} \mathbf{N} \cdot \mathbf{L}$
	$=\mathbf{N} \cdot \mathbf{L}$
	$=\cos \theta_{i}$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example - assume a few of the normals are known (e.g., along silhouette)
- constraints on neighboring normals-"integrability" - smoothness
- Hard to get it to work well in practice
- plus, how many real objects have constant albedo?

Solving the equations

$$
\begin{aligned}
\mathrm{G} & =\mathrm{IL}^{-1} \\
k_{d} & =\|\mathbf{G}\| \\
\mathrm{N} & =\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

More than three lights

Get better results by using more lights

Color images

The case of RGB images

- get three sets of equations, one per color channel:

$$
\begin{aligned}
& \mathbf{I}_{R}=k_{d R} \mathrm{~N}^{T} \mathcal{L} \\
& \mathbf{I}_{G}=k_{d G} \mathbf{N}^{T} \mathcal{L} \\
& \mathbf{I}_{B}=k_{d B} \mathbf{N}^{T} \mathcal{L}
\end{aligned} \quad \text { call this } \mathbf{J}, \quad \text { What's the size of } \mathrm{J} ?
$$

- Simple solution: first solve for \mathbf{N} using one channel
- Then substitute known \mathbf{N} into above equations to get $\mathrm{k}_{\mathrm{d}} \mathrm{s}$:

$$
\begin{aligned}
\mathbf{I}_{R} & =k_{d R} \mathbf{J} \\
\mathbf{J} \cdot \mathbf{I}_{R} & =k_{d R} \mathbf{J} \cdot \mathbf{J} \\
k_{d R} & =\frac{\mathbf{J} \cdot \mathbf{I}_{R}}{\mathbf{J} \cdot \mathbf{J}}
\end{aligned}
$$

Computing light source directions

Trick: place a chrome sphere in the scene

Recall the rule for specular reflection
For a perfect mirror, light is reflected about \mathbf{N}
$R_{e}=\left\{\begin{array}{cc}R_{i} & \text { if } \mathbf{V}=\mathbf{R} \\ 0 & \text { otherwise }\end{array}\right.$

L

We see a highlight when $\mathbf{V}=\mathbf{R}$

- then L is given as follows:
$\mathbf{L}=2(\mathbf{N} \cdot \mathbf{R}) \mathbf{N}-\mathbf{R}$

Computing the light source direction
Depth from normals
Chrome sphere that has a highlight at position \mathbf{h} in the image

Can compute \mathbf{N} by studying this figure

- Hints:
- use this equation: $\|H-C\|=r$
- can measure \mathbf{c}, \mathbf{h}, and r in the image

Get a similar equation for \mathbf{V}_{2}

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation (project 3)

Limitations

Big problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

Smaller problems

- camera and lights have to be distant
- calibration requirements
- measure light source directions, intensities
- camera response function

Trick for handling shadows

Weight each equation by the pixel brightness:

$$
I_{i}\left(I_{i}\right)=I_{i}\left[k_{d} \mathbf{N} \cdot \mathbf{L}_{\mathrm{i}}\right]
$$

Gives weighted least-squares matrix equation:

$$
\left[\begin{array}{lll}
I_{1}^{2} & \ldots & I_{n}^{2}
\end{array}\right]=k_{d} \mathbf{N}^{T}\left[\begin{array}{lll}
I_{1} \mathbf{L}_{1} & \ldots & I_{n} \mathbf{L}_{\mathbf{n}}
\end{array}\right]
$$

Solve for N, k_{d} as before

