Announcements

- Project 1
 - test the turn-in procedure this week (make sure your folder's there)
 - grading session next Thursday 2:30-5pm
 - 10 minute slot to demo your project for a TA
 - signup procedure TBA
- Project 2
 - next week signup for panorama kits
 - online signup TBA
 - find a partner (just for taking images—coding will be solo)

Motion Estimation

 $\underline{\text{http://www.sandlotscience.com/Distortions/Breathing_Square.htm}}$

http://www.sandlotscience.com/Ambiguous/Barberpole Illusion.htm

- Today's Readings
 Trucco & Verri, 8.3 8.4 (skip 8.3.3, read only top half of p. 199)
 Numerical Recipes (Newton-Raphson), 9.4 (first four pages)
 - - http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

Why estimate motion?

Lots of uses

- · Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- · Special effects

Optical flow

Problem definition: optical flow

How to estimate pixel motion from image H to image I?

- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let's look at these constraints more closely

- brightness constancy: Q: what's the equation?
- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:

$$\begin{split} I(x+u,y+v) &= I(x,y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms} \\ &\approx I(x,y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v \end{split}$$

Optical flow equation

Combining these two equations

shorthand:
$$I_x = \frac{\partial I}{\partial x}$$

$$\approx I(x,y) + I_x u + I_y v - H(x,y)$$

$$\approx (I(x,y) - H(x,y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact $0 = I_t + \nabla I \cdot [\frac{\partial x}{\partial t} \, \frac{\partial y}{\partial t}]$

Optical flow equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

Solving the aperture problem

How to get more equations for a pixel?

- Basic idea: impose additional constraints
- most common is to assume that the flow field is smooth locally
 - $\,-\,$ one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u\ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1}) & I_{y}(\mathbf{p}_{1}) \\ I_{x}(\mathbf{p}_{2}) & I_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25}) & I_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p}_{1}) \\ I_{t}(\mathbf{p}_{2}) \\ \vdots \\ I_{t}(\mathbf{p}_{25}) \end{bmatrix}$$

RGB version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
- most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 If we use a 5x5 window, that gives us 25*3 equations per pixel!

of the use a 5x5 window, that gives us 25*3 equations per pix
$$0 = I_t(\mathbf{p_i})[i] + \nabla I(\mathbf{p_i})[i] \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p}_1)[0] & I_y(\mathbf{p}_1)[0] \\ I_x(\mathbf{p}_1)[1] & I_y(\mathbf{p}_1)[1] \\ I_x(\mathbf{p}_1)[2] & I_y(\mathbf{p}_1)[2] \\ \vdots & \vdots & \vdots \\ I_x(\mathbf{p}_{25})[0] & I_y(\mathbf{p}_{25})[0] \\ I_x(\mathbf{p}_{25})[1] & I_y(\mathbf{p}_{25})[1] \\ I_x(\mathbf{p}_{25})[2] & I_y(\mathbf{p}_{25})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p}_1)[0] \\ I_t(\mathbf{p}_1)[1] \\ I_t(\mathbf{p}_1)[2] \\ \vdots \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[1] \end{bmatrix}$$

Lukas-Kanade flow

Prob: we have more equations than unknowns

$$A \atop 25 \times 2} d = b \atop 25 \times 1 \ 25 \times 1$$
 minimize $||Ad - b||^2$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A) \underset{2 \times 2}{d} = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)
 - described in Trucco & Verri reading

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

When is this solvable?

- A^TA should be invertible
- ATA entries should not be too small (noise)
- A^TA should be well-conditioned
 - λ_1/λ_2 should not be too large (λ_1 = larger eigenvalue)

Eigenvectors of ATA

$$A^TA = \left[\begin{array}{cc} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{array} \right] = \sum \left[\begin{array}{c} I_x \\ I_y \end{array} \right] [I_x \ I_y] = \sum \nabla I (\nabla I)^T$$

Suppose (x,y) is on an edge. What is A^TA ?

- · gradients along edge all point the same direction
- gradients away from edge have small magnitude
 - $\left(\sum \nabla I(\nabla I)^T\right) \approx k \nabla I \nabla I^T$

 $\left(\sum \nabla I(\nabla I)^T\right)\nabla I = k\|\nabla I\|^2 \nabla I$

- ∇I is an eigenvector with eigenvalue $k \|\nabla I\|^2$
- What's the other eigenvector of A^TA?
 - let N be perpendicular to ∇I

$$\left(\sum \nabla I(\nabla I)^T\right)N = 0$$

- N is the second eigenvector with eigenvalue 0

The eigenvectors of A^TA relate to edge direction and magnitude

Edge

- gradients very large or very small large λ_1 , small λ_2

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?

- $\bullet \quad \text{Suppose A^TA is easily invertible} \\$
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is **not** satisfied
- The motion is **not** small
- A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

Recall our small motion assumption

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

This is not exact

• To do better, we need to add higher order terms back in:

$$= I(x,y) + I_x u + I_y v + \text{higher order terms} - H(x,y)$$

This is a polynomial root finding problem

- · Can solve using Newton's method
 - Also known as **Newton-Raphson** method

1D case on board

- Today's reading (first four pages)

» http://www.library.cornell.edw/nr/bookcpdf/c9-4.pdf
• Approach so far does one iteration of Newton's method

- Better results are obtained via more iterations

Iterative Refinement

Iterative Lucas-Kanade Algorithm

- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - use image warping techniques
- 3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

Reduce the resolution!

Motion tracking

Suppose we have more than two images

- How to track a point through all of the images?
 - In principle, we could estimate motion between each pair of consecutive frames
 - Given point in first frame, follow arrows to trace out it's path
 - Problem: DRIFT
 - » small errors will tend to grow and grow over time—the point will drift way off course

Feature Tracking

- Choose only the points ("features") that are easily tracked
- How to find these features?
 - windows where $\sum
 abla I(
 abla I)^T$ has two large eigenvalues
- Called the Harris Corner Detector

Feature Detection

Tracking features

Feature tracking

Compute optical flow for that feature for each consecutive H, I

When will this go wrong?

- Occlusions—feature may disappear
 - need mechanism for deleting, adding new features
- · Changes in shape, orientation
 - allow the feature to deform
- · Changes in color
- Large motions
 - will pyramid techniques work for feature tracking?

Handling large motions

L-K requires small motion

• If the motion is much more than a pixel, use discrete search instead

- · Given feature window W in H, find best matching window in I
- Minimize sum squared difference (SSD) of pixels in window

$$min_{(u,v)} \left\{ \sum_{(x,y) \in W} |I(x+u,y+v) - H(x,y)|^2 \right\}$$

- Solve by doing a search over a specified range of (u,v) values
 - $\;$ this (u,v) range defines the $\boldsymbol{search} \; \boldsymbol{window}$

Tracking Over Many Frames

Feature tracking with m frames

- 1. Select features in first frame
- 2. Given feature in frame i, compute position in i+1
- 3. Select more features if needed
- 4. i = i + 1
- 5. If i < m, go to step 2

Issues

- · Discrete search vs. Lucas Kanade?
 - depends on expected magnitude of motion
 - discrete search is more flexible
- Compare feature in frame i to i+1 or frame 1 to i+1?
 - affects tendency to drift...
- How big should search window be?
 - too small: lost features. Too large: slow

