Announcements

- Project 1
- Grading session this afternoon
- Artifacts due Friday (voting TBA)
- Project 2 out (online)
- Signup for panorama kits ASAP (weekend slots go quickly...)
- help session at end of class

How to do it?

Basic Procedure

- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation between second image and first - Lucas-Kanade registration
- Shift the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Aligning images

How to account for warping?

- Translations are not enough to align the images
- Photoshop demo

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Image reprojection
Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Image reprojection

Homographies
Perspective projection of a plane

- Lots of names for this:
- homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

To apply a homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathbf{H p} \quad$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates
- divide by w (third) coordinate

Image warping with homographies

Panoramas
What if you want a 360° field of view?

Cylindrical projection

- Convert to cylindrical coordinates

$$
(\sin \theta, h, \cos \theta)=(\hat{x}, \hat{y}, \hat{z})
$$

- Convert to cylindrical image coordinates

$$
(\tilde{x}, \tilde{y})=(s \theta, s h)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

- s defines size of the final image
» often convenient to set $s=$ camera focal length

Cylindrical reprojection

How to map from a cylinder to a planar image?

- Apply camera projection matrix
- or use the version of projection that properly accounts for radial distortion, as discussed in projection slides. This is what you'll do for project 2.
side view

top-down view

Cylindrical reprojection

Image 384×300

$\mathrm{f}=\mathbf{2 8 0}$

$\mathrm{f}=\mathbf{3 8 0}$

Map image to cylindrical coordinates

- need to know the focal length

| Cylindrical panoramas |
| :--- | :--- |
| Steps |
| • Reproject each image onto a cylinder |
| • Blend |
| Output the resulting mosaic |

Problem: Drift

Error accumulation

- small errors accumulate over time

Project 2 (out today)

1. Take pictures on a tripod (or handheld)
2. Warp to cylindrical coordinates
3. Automatically compute pair-wise alignments
4. Correct for drift
5. Blend the images together
6. Crop the result and import into a viewer

Alpha Blending

Encoding blend weights: $I(x, y)=(\alpha R, \alpha G, \alpha B, \alpha)$ color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$

Implement this in two steps:

1. accumulate: add up the (α premultiplied) $\mathrm{RGB} \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value Q: what if $\alpha=0$?

For more info: Perez et al, SIGGRAPH 2003

- http://research.microsoft.com/vision/cambridge/papers/perez siggraph03.pdf

Forward warping

Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=h(x, y) \text { in the second image }
$$

Q: what if pixel lands "between" two pixels?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=h(x, y) \text { in the second image }
$$

Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=h^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=h^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?
A: resample color value

- We discussed resampling techniques before
- nearest neighbor, bilinear, Gaussian, bicubic

Forward vs. inverse warping
Q: which is better?

A: usually inverse—eliminates holes

- however, it requires an invertible warp function-not always possible...

AutoStitch

Method so far is not completely automatic

- need to know which pairs fit together
- need to initialize Lucas-Kanade to get good results

Newer methods are fully automatic

- AutoStitch, by Matthew Brown and David Lowe:
- http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
- Based on feature matching techniques

