Announcements

Midterm out today

- due in a week

Project2

- no demo session
- artifact voting TBA

Properties of light

Today

- What is light?
- How do we measure it?
- How does light propagate?
- How does light interact with matter?

The light field

$R(X, Y, Z, \theta, \phi, \lambda, t)$

- Known as the plenoptic function
- If you know R, you can predict how the scene would appear from any viewpoint. How?

The light field $R(u, v, s, t)$ _ t 放 not time (different from above $\mathrm{t}!$)

- Assume radiance does not change along a ray
- what does this assume about the world?
- Parameterize rays by intersection with two planes:

- Usually drop and time parameters
- How could you capture a light field?

Light spectrum

The appearance of light depends on its power spectrum

- How much power (or energy) at each wavelength

Our visual system converts a light spectrum into "color"

- This is a rather complex transformation

The human visual system

Color perception

- Light hits the retina, which contains photosensitive cells - rods and cones
- These cells convert the spectrum into a few discrete values

Density of rods and cones

Rods and cones are non-uniformly distributed on the retina

- Rods responsible for intensity, cones responsible for color
- Fovea - Small region (1 or 2°) at the center of the visual field containing the
highest density of cones (and no rods).
Less visual acuity in the periphery-many rods wired to the same neuron

With one eye shut, at the right distance, all of these letters should appear equally legible (Glassner, 1.7).

Light response is nonlinear

Our visual system has a large dynamic range

- We can resolve both light and dark things at the same time
- One mechanism for achieving this is that we sense light intensity on a logarithmic scale
- an exponential intensity ramp will be seen as a linear ramp
- Another mechanism is adaptation
- rods and cones adapt to be more sensitive in low light, less sensitive in bright light.

After images

Tired photoreceptors

- Send out negative response after a strong stimulus
http://www.sandlotscience.com/Contrast/Checker Board 2.htm

Color perception

Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
- Each cone yields one number
- Q: How can we represent an entire spectrum with 3 numbers?
- A: We can't! Most of the information is lost.
- As a result, two different spectra may appear indistinguishable
» such spectra are known as metamers
" $\frac{\text { http://mww.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/expl }}{\text { oratories/applets/spectrum/metamers quide }}$

Perception summary

The mapping from radiance to perceived color is quite complex

- We throw away most of the data
- We apply a logarithm
- Brightness affected by pupil size
- Brightness contrast and constancy effects
- Afterimages

Recovering the camera response

Method 1

- Carefully model every step in the pipeline
- measure aperture, model film, digitizer, etc.
- this is *really* hard to get right

Method 2

- Calibrate (estimate) the response function
- Image several objects with known radiance
- Measure the pixel values
- Fit a function

- Find the inverse: f^{-1} maps pixel intensity to radiance

Recovering the camera response

Method 3

- Calibrate the response function from several images
- Consider taking images with shutter speeds $1 / 1000,1 / 100$, $1 / 10$, and 1
- Q: What is the relationship between the radiance or pixel values in consecutive images?
- A: 10 times as much radiance
- Can use this to recover the camera response function

For more info $=E \Delta t$
P. E. Debevec and J. Malik. Recovering High Dynamic Range Radiance Maps from Photographs. In SIGGRAPH 97, August 1997

Light sources

Basic types

- point source
- directional source
- a point source that is infinitely far away
- area source
- a union of point sources

More generally

- a light field can describe *any* distribution of light sources

The interaction of light and matter

What happens when a light ray hits a point on an object?

- Some of the light gets absorbed
- converted to other forms of energy (e.g., heat)
- Some gets transmitted through the object
- possibly bent, through "refraction"
- Some gets reflected
- as we saw before, it could be reflected in multiple directions at once

Let's consider the case of reflection in detail

- In the most general case, a single incoming ray could be reflected in all directions. How can we describe the amount of light reflected in each direction?

The BRDF

Diffuse reflection

The Bidirectional Reflection Distribution Function

- Given an incoming ray $\left(\theta_{i}, \phi_{i}\right)$ and outgoing ray $\left(\theta_{e}, \phi_{e}\right)$ what proportion of the incoming light is reflected along outgoing ray?

Answer given by the BRDF: $\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)$

Diffuse reflection

- Dull, matte surfaces like chalk or latex paint
- Microfacets scatter incoming light randomly
- Effect is that light is reflected equally in all directions

Specular reflection

Moving the light source

Changing n_{s}

Phong illumination model

Phong approximation of surface reflectance

- Assume reflectance is modeled by three components
- Diffuse term
- Specular term
- Ambient term (to compensate for inter-reflected light)
$I_{e}=k_{a} I_{a}+I_{i}\left[k_{d}(\mathbf{N} \cdot \mathbf{L})_{+}+k_{s}(\mathbf{V} \cdot \mathbf{R})_{+}^{n_{s}}\right]$

L, N, V unit vectors
$\mathrm{I}_{\mathrm{e}}=$ outgoing radiance
= incoming radiance
$l_{a}=$ ambient light
$\mathrm{k}_{\mathrm{a}}=$ ambient light reflectance factor
$(\mathrm{x})_{+}=\max (\mathrm{x}, 0)$

Columbia-Utrecht Database

Captured BRDF models for a variety of materials

- http://www.cs.columbia.edu/CAVE/curet/index.html

