Edge Detection

Today's reading
• <u>Cipolla & Gee on edge detection</u> (available online)

Edge detection

Convert a 2D image into a set of curves

- Extracts salient features of the scene
- More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Edge detection

How can you tell that a pixel is on an edge?

snoop demo

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The discrete gradient

How can we differentiate a digital image F[x,y]?

The discrete gradient

How can we differentiate a digital image F[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y]\approx F[x+1,y]-F[x,y]$$

How would you implement this as a cross-correlation?

filter demo

The Sobel operator

Better approximations of the derivatives exist

• The Sobel operators below are very commonly used

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - $-\,$ the 1/8 term is needed to get the right gradient value, however

