Recognizing Deformable Shapes

Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children's Hospital

Goal

We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

This is a difficult problem that is relevant in several application fields.

 Generalize existing numeric surface representations for matching 3-D objects to the problem of identifying shape classes.

Main Contribution

An algorithmic framework based on symbolic shape descriptors that are robust to deformations as opposed to numeric descriptors that are often tied to specific shapes.

What Kind Of Deformations?

Deformed Infants' Skulls

Occurs when sutures of the cranium fuse prematurely (synostosis).

More Craniofacial Deformations

Unicoronal Synostosis

Metopic Synostosis

Bicoronal Synostosis

Sagittal Synostosis

Alignment-Verification Limitations

The approach does not extend well to the problem of identifying classes of similar shapes. In general:

- Numeric shape representations are not robust to deformations.
- There are not exact correspondences between model and scene.
- Objects in a shape class do not align.

Recognition Problem (1)

We are given a set of surface meshes {C₁, C₂,...,C_n} which are random samples of two shape classes C

Recognition Problem (2)

The problem is to use the given meshes and labels to construct an algorithm that determines whether shape class members are present in a single view range scene.

Classification Problem (1)

• We are given a set of surface meshes $\{C_1, C_2, \dots, C_n\}$ which are random samples of two shape classes C^{+1} and C^{-1} ,

where each surface mesh is labeled either by +1 or -1.

Classification Problem (2)

The problem is to use the given meshes and labels to construct an algorithm that predicts the label of a new surface mesh C_{new}.

Is this skull normal (+1) or abnormal (-1)?

Cnew

Assumptions

 All shapes are represented as oriented surface meshes of fixed resolution.

- The vertices of the meshes in the training set are in full correspondence.
- Finding full correspondences : hard problem yes ... but it is approachable (use morphable models technique: Blantz and Vetter, SIGGRAPH 99; C. R. Shelton, IJCV, 2000; Allen et al., SIGGRAPH 2003).

Four Key Elements To Our Approach

Numeric Signatures

Numeric Signatures: Spin Images

Spin images for point P

- Rich set of surface shape descriptors.
- Their spatial scale can be modified to include local and non-local surface features.
- Representation is robust to scene clutter and occlusions.

4 ecture

Symbolic Signatures Architecture of Classifiers

Component Extraction Example

Region

Growing

Selected 8 seed points by hand

Grow one region at the time (get one detector per component)

Labeled Surface Mesh

Detected components on a training sample

How To Combine Component Information?

Extracted components on test samples

Note: Numeric signatures are invariant to mirror symmetry; our approach preserves such an invariance.

Symbolic Signatures

4

Symbolic Signature

Labeled Surface Mesh

Encode Geometric Configuration

Symbolic Signature at P

Matrix storing component labels

Symbolic Signature Construction

Symbolic Signatures Are Robust To Deformations

Relative position of components is stable across deformations: experimental evidence

Architecture of Classifiers

Surface Mesh

Two classification stages

At Classification Time (2)

1

5

8

6

Symbolic pattern for components 1,2,4

> Assigns Symbolic Labels

Two detectors

Bank of

Symbolic

Signatures

Detectors

Symbolic pattern for components 5,6,8

+1

Architecture Implementation

- ALL our classifiers are (off-the-shelf) v-Support Vector Machines (v-SVMs) (Schölkopf et al., 2000 and 2001).
- Component (and symbolic signature) detectors are one-class classifiers.
- Component label assignment: performed with a multi-way classifier that uses pairwise classification scheme.
- Gaussian kernel.

Experimental Validation

Recognition Tasks: 4 (T1 - T4) Classification Tasks: 3 (T5 - T7) No. Experiments: 5470

Rotary Table

Setup

Laser

Recognition

Classification

Shape Classes

Task 1: Recognizing Single Objects (1)

No. Shape classes: 9.

- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1960.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40x40.
- Symbolic signature size: 20x20.
- No clutter and occlusion.

Task 1: Recognizing Single Objects (2)

Snowman: 93%.

Rabbit: 92%.

Dog: 89%.
Cat: 85.5%.
Cow: 92%.
Bear: 94%.
Horse: 92.7%.

Human head: 97.7%.

Human face: 76%.

Recognition rates (true positives) (No clutter, no occlusion, complete models)

Tasks 2-3: Recognition In Complex Scenes (1)

No. Shape classes: 3.

Training set size: 400 meshes.

- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.

Numeric signature size: 40x40.

- Symbolic signature size: 20x20.
- T2 low clutter and occlusion.

Task 2-3: Recognition in Complex Scenes (2)

Shape	True	False	True	False
Class	Positives	Positives	Positives	Positives
Snowmen	91%	31%	87.5%	28%
Rabbit	90.2%	27.6%	84.3%	24%
Dog	89.6%	34.6%	88.12%	22.1%

Task 2

Task 2-3: Recognition in Complex Scenes (3)

Task 4: Recognizing Human Heads (1)

No. Shape classes: 1.

- Training set size: 400 meshes.
- Testing set size: 250 meshes.

No. Experiments: 710.

- No. Component detectors:8.
- No. Symbolic signature detectors: 2.
- Numeric signature size: 70x70.
- Symbolic signature size: 12x12.

Task 4: Recognizing Human Heads (2)

% Occlusion

% Clutter

FP rate: ~1%,

Task 4: Recognizing Human Heads (3)

Task 5: Classifying Normal vs. Abnormal Human Heads (1) No. Shape classes: 6. Training set size: 400 meshes. Testing set size: 200 meshes. No. Experiments: 1200. No. Component detectors:3. No. Symbolic signature detectors: 1. Numeric signature size: 50x50. Symbolic signature size: 12x12.

Task 5: Classifying Normal vs. Abnormal Human Heads (1)

Shape Classes	Classification Accuracy %
Normal vs. Abnormal 1	98
Normal vs. Abnormal 2	100
Abnormal 1 vs. 3	98
Abnormal 1 vs. 4	97
Abnormal 1 vs. 5	92

Five Cases

Full models

(convex combinations of Normal and Abnormal 1) Task 6: Classifying Normal vs. Abnormal Human Heads In Complex Scenes(1)

No. Shape classes: 2. Training set size: 400 meshes. Testing set size: 200 meshes. No. Experiments: 1200. No. Component detectors:3. No. Symbolic signature detectors: 1. Numeric signature size: 100x100. Symbolic signature size: 12x12.

Task 6: Classifying Normal vs. Abnormal Human Heads In Complex Scenes(1)

Shape	Classification
Classes	Accuracy %
Normal vs. Abnormal 1	88

Clutter < 15% and occlusion < 50%

Range scenes - single view

Task 7: Classifying Normal vs. Abnormal Neurocranium (1)

No. Shape classes: 2. Training set size: 400 meshes. Testing set size: 200 meshes. No. Experiments: 2200. No. Component detectors:3. No. Symbolic signature detectors: 1. Numeric signature size: 50x50. Symbolic signature size: 15x15.

Superimposed models

Main Contributions (1)

A novel symbolic signature representation of deformable shapes that is robust to intra-class variability and missing information, as opposed to a numeric representation which is often tied to a specific shape.

A novel kernel function for quantifying symbolic signature similarities.

Main Contributions (2)

- A region growing algorithm for learning shape class components.
- A novel architecture of classifiers for abstracting the geometry of a shape class.
- A validation of our methodology in a set of large scale recognition and classification experiments aimed at applications in scene analysis and medical diagnosis.

Main Contributions (3)

Our approach:

- Is general can be applied to a variety of shape classes.
- Is robust to clutter and occlusion
- It Works in practice
- Is a step forward in 3-D object recognition research.