Pattern Recognition

Pattern recognition Is:

1. The name of the journal of the Pattern Recognition
Society.

2. A research area in which patterns in data are
found, recognized, discovered, ...whatever.

3. A catchall phrase that includes

o classification
e clustering
e data mining




'@ Two Schools of Thought

1. Statistical Pattern Recognition

The data is reduced to vectors of numbers
and statistical techniques are used for
the tasks to be performed.

2. Structural Pattern Recognition

The data Is converted to a discrete structure
(such as a grammar or a graph) and the

techniques are related to computer science
subjects (such as parsing and graph matching).




& | In this course

1. How should objects to be classified be
represented?

2. What algorithms can be used for recognition
(or matching)?

3. How should learning (training) be done?




| Classification in Statistical PR

A IS a set of objects having some important
properties in common

A IS @ program that inputs the
data (image) and extracts features that can be
used in classification.

A IS a program that inputs the feature
vector and assigns it to one of a set of designated
classes or to the “reject” class.

With what kinds of classes do you work?



Feature Vector Representation

¢ X=[X1, X2, ..., xn],
each xJ a real number

¢ X] may be an object
measurement

¢ X] may be count of
object parts

¢ Example: object rep.
[#holes, #strokes,
moments, ...]
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Possible features for char rec.
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& Some Terminology

¢ Classes: set of m known categories of objects
(a) might have a known description for each
(b) might have a set of samples for each
4 Reject Class:
a generic class for objects not in any of
the designated known classes
¢ Classifier:
Assigns object to a class based on features




¢ Functions f(x, K)
perform some

computation on el
prubablht_.:_.-

feature vector x | computations
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= Classification using nearest class
£ mean

¢ Compute the
Euclidean distance
between feature vector
X and the mean of
each class.

¢ Choose closest class,
If close enough (reject

class

otherwise)




== Nearest mean might yield poor

* results with complex structure

¢ Class 2 has two
modes:;

¢ But If modes are
detected, two
subclass mean
vectors can be
used
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 Scaling coordinates by std dev

We can compute a modified distance from
feature vector x to class mean vector X,

by scaling by the spread or standard deviation
o, of class c along each dimension 1.

scaled Euclidean distance from x to class mean X
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(@ Nearest Neighbor Classification

» Keep all the training samples in some efficient
look-up structure.

* Find the nearest neighbor of the feature vector
to be classified and assign the class of the neighbor.

e Can be extended to K nearest neighbors.
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¢ Plots correct
detection rate
versus false
alarm rate

¢ Generally, false
alarms go up
with attempts to
detect higher
percentages of
known objects
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A recent ROC from our work:
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Confusion matrix shows
empirical performance

class j output by the pattern recognition system
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Confusion may be unavoidable between some classes,
for example, between 9’s and 4’s.
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Bayesian decision-making

e Classify into class w that is most likely based on
observations X. The following distributions are
needed.

class conditional distribution: p(x|w;) for each class w;

a priori probability : P(w;) for each elass w;

unconditional distribution : p(x)
e Then we have:

]7:-{ r ||'.4.J i }P f Wy } B ;r:-{ r ||'.4.J i } P {u,; ,}

p(z) iz m P(x|wi) P(w;)

P(wilz) =
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@ Classifiers often used in CV

e Decision Tree Classifiers
e Artificial Neural Net Classifiers

 Bayesian Classifiers and Bayesian Networks
(Graphical Models)

 Support Vector Machines
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o

& | Decision Trees
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(@ Decision Tree Characteristics

1. Training
How do you construct one from training data?
Entropy-based Methods

2. Strengths
Easy to Understand

3. Weaknesses

Overtraining
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Y Entropy-Based Automatic

' Decision Tree Construction

Training Set S

x2=(21,f22,

xn=(fn1,f22,

x1=(f11,f12,..

f1m)

f2m)

f2m)

Node 1
What feature
should be used?

/I\ What values?

Quinlan suggested information gain in his ID3 system
and later the gain ratio, both based on entropy.
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=plife]e)Y

Given a set of training vectors S, If there are ¢ classes,

C
Entropy(S) = _Zl-pi Iogz(pi)
1=

Where pi is the proportion of category | examples in S.

If all examples belong to the same category, the entropy
IS 0 (no discrimination).

The greater the discrimination power, the larger the
entropy will be.
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= |nformation Gain

The information gain of an attribute A Is the expected

reduction in entropy caused by partitioning on this attribute.

Gain(S,A) = Entropy(S) - > [5VI Entropy(Sv)
v € Values(A) S|

where Sv Is the subset of S for which attribute A has
value v.

Choose the attribute A that gives the maximum
Information gain.
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. Information Gain (cont)

Set S | Attribute A
vl V2 vk

SetS’ . S'={seS | value(A)=v1}

repeat
recursively

Information gain has the disadvantage that it prefers
attributes with large number of values that split the
data into small, pure subsets.




Information Content

The information content I(C;F) of the class variable C
with possible values {c1, c2, ... cm} with respect to

the feature variable F with possible values {f1, f2, ... , fd}
IS defined by:

e P(C = ci) Is the probability of class C having value ci.

e P(F=f)) is the probability of feature F having value fj.

o P(C=cI,F=fj) is the joint probability of class C = ci
and variable F = fj.

These are estimated from frequencies in the training data.
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X Y [/ C
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How would you distinguish class | from class 11?
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Example (cont)
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@ Using Information Content

e Start with the root of the decision tree and the whole
training set.

o Compute I(C,F) for each feature F.

 Choose the feature ¥ with highest information
content for the root node.

e Create branches for each value f of F.

* On each branch, create a new node with reduced
training set and repeat recursively.
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& Artificial Neural Nets

Artificial Neural Nets (ANNS) are networks of
artificial neuron nodes, each of which computes
a simple function.

An ANN has an input layer, an output layer, and
“hidden” layers of nodes.

L]
N
] L]
E \§ g
H L Outputs
Inputs L]
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Node Functions

1 w(1 ) neuron i

an

output = g (X aj * w(j,i))

Function g i1s commonly a step function, sign function,

or sigmoid function (see text).
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Neural Net Learning

That’s beyond the scope of this text; only
simple feed-forward learning is covered.

The most common method is called back propagation.

We’ve been using a free package called NevProp.

What do you use?
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Support Vector Machines (SVM)

Support vector machines are learning algorithms
that try to find a hyperplane that separates

the differently classified data the most.

They are based on two key ideas:

o Maximum margin hyperplanes

e A kernel ‘trick’.
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Hyperplane

Find the hyperplane with maximal margin for all
the points. This originates an optimization problem
which has a unigque solution (convex problem).
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What can be done if data cannot be separated with a
hyperplane?
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% The kernel trick

The SVM algorithm implicitly maps the original
data to a feature space of possibly infinite dimension
In which data (which is not separable in the

original space) becomes separable in the feature space.

Original space Rk Feature space Rln
o 0 0 L
1 0 - 0 ]
0 9 Kernel 0 ) 0 1
1 1 trick
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2| Our Current Application

o Sal Ruiz is using support vector machines in his
work on 3D object recognition.

of a 3D model of a class of objects.
 The classifiers learn what kinds of surface patches

are related to key parts of the model
(ie. A snowman’s face)

* He Is training classifiers on data representing deformations
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th Patches

Snowman w
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== VVe are also starting to use SVMs

“£ | for Insect Recognition
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(@  EM for Classification

¢ The EM algorithm was used as a clustering
algorithm for image segmentation.

B o It can also be used as a classifier, by
creating a Gaussian “model” for each class
to be learned.
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