Lucas-Kanade Motion Estimation

Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Why estimate motion?

We live in a 4-D world

Wide applications

- Object Tracking
- Camera Stabilization
- Image Mosaics
- 3D Shape Reconstruction (SFM)
- Special Effects (Match Move)

Optical flow

Problem definition: optical flow

How to estimate pixel motion from image H to image I?

- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the **optical flow** problem

Optical flow constraints (grayscale images)

Let's look at these constraints more closely

brightness constancy: Q: what's the equation?

$$H(x, y) = I(x+u, y+v)$$

- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

$$\approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

5

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

shorthand: $I_x = \frac{\partial I}{\partial x}$ The x-component of the gradient vector.

What is I_t ? The time derivative of the image at (x,y)

How do we calculate it?

Optical flow equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

1 equation, but 2 unknowns (u and v)

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

Aperture problem

Solving the aperture problem

Basic idea: assume motion field is smooth

Lukas & Kanade: assume locally constant motion

- pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

Many other methods exist. Here's an overview:

• Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow techniques, *International Journal of Computer Vision*, 12(1):43-77, 1994.

Lukas-Kanade flow

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1}) & I_{y}(\mathbf{p}_{1}) \\ I_{x}(\mathbf{p}_{2}) & I_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25}) & I_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p}_{1}) \\ I_{t}(\mathbf{p}_{2}) \\ \vdots \\ I_{t}(\mathbf{p}_{25}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

RGB version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}})[0] & I_{y}(\mathbf{p_{1}})[0] \\ I_{x}(\mathbf{p_{1}})[1] & I_{y}(\mathbf{p_{1}})[1] \\ I_{x}(\mathbf{p_{1}})[2] & I_{y}(\mathbf{p_{1}})[2] \\ \vdots & \vdots & \vdots \\ I_{x}(\mathbf{p_{25}})[0] & I_{y}(\mathbf{p_{25}})[0] \\ I_{x}(\mathbf{p_{25}})[1] & I_{y}(\mathbf{p_{25}})[1] \\ I_{x}(\mathbf{p_{25}})[2] & I_{y}(\mathbf{p_{25}})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p_{1}})[0] \\ I_{t}(\mathbf{p_{1}})[1] \\ I_{t}(\mathbf{p_{1}})[2] \\ \vdots \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[1] \\ I_{t}(\mathbf{p_{25}})[1] \end{bmatrix}$$

$$A \qquad d \qquad b \\ 75 \times 2 \qquad 2 \times 1 \qquad 75 \times 1$$

Lukas-Kanade flow

Prob: we have more equations than unknowns

Solution: solve least squares problem

minimum least squares solution given by solution (in d) of:

$$(A^{T}A) d = A^{T}b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A$$

$$A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A$$

$$A^T b$$

When is This Solvable?

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Edges cause problems

- large gradients, all the same
- large λ_1 , small λ_2

Low texture regions don't work

- gradients have small magnitude
- small λ_1 , small λ_2

High textured region work best

 $\sum \nabla I(\nabla I)^T$

gradients are different, large magnitudes

– large λ_1 , large λ_2

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is **not** satisfied
- The motion is **not** small
- A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Revisiting the small motion assumption

Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Coarse-to-fine optical flow estimation

Optical flow result

The Flower Garden Video

What should the optical flow be?

Results from Ming Ye's Algorithm (2003 EE)

TAXI: Hamburg Taxi

256x190, (Barron 94) max speed 3.0 pix/frame

LMS

BA

Ours

Error map

Smoothness error

Traffic

512x512 (Nagel) max speed: 6.0 pix/frame

BA

Ours

Error map

Smoothness error

Pepsi Can

201x201 (Black) Max speed: 2pix/frame

Ours

BA

Smoothness error

FG: Flower Garden

360x240 (Black) Max speed: 7pix/frame

BA

LMS

Error map

Smoothness error 29

Ours