
1

Finding Line and Curve Segments
from Edge Images

Given an edge image, how do we find line and arc segments?

junctionMethod 1: Tracking

Use masks to identify the following events:

1. start of a new segment
2. interior point continuing a segment
3. end of a segment
4. junction between multiple segments
5. corner that breaks a segment into two

corner

2

Edge Tracking Procedure

for each edge pixel P {
classify its pixel type using masks
case

1. isolated point : ignore it
2. start point : make a new segment
3. interior point : add to current segment
4. end point : add to current segment and finish it
5. junction or corner : add to incoming segment

finish incoming segment
make new outgoing segment(s)

The ORT package uses a fancier corner finding approach.

3

Hough Transform
• The Hough transform is a method for detecting

lines or curves specified by a parametric function.

• If the parameters are p1, p2, … pn, then the Hough
procedure uses an n-dimensional accumulator array
in which it accumulates votes for the correct parameters
of the lines or curves found on the image.

y = mx + b

image b
accumulator

m

4

Finding Straight Line Segments

• y = mx + b is not suitable (why?)

• The equation generally used is: d = r sin θ + c cos θ

c

d

θ

d is the distance from the line to origin

θ is the angle the perpendicular makes
with the column axis

r

5

Procedure to Accumulate Lines
• Set accumulator array A to all zero.

Set point list array PTLIST to all NIL.

• For each pixel (R,C) in the image {

• compute gradient magnitude GMAG
• if GMAG > gradient_threshold {

• compute quantized tangent angle THETAQ
• compute quantized distance to origin DQ
• increment A(DQ,THETAQ)
• update PTLIST(DQ,THETAQ) } }

6

Example
gray-tone image DQ THETAQ

0 0 0 100 100
0 0 0 100 100
0 0 0 100 100

100 100 100 100 100
100 100 100 100 100

- - 3 3 -
- - 3 3 -
3 3 3 3 -
3 3 3 3 -
- - - - -

- - 0 0 -
- - 0 0 -
90 90 40 20 -
90 90 90 40 -
- - - - -

360
.
6
3
0

Accumulator A PTLIST
- - - - - - -
- - - - - - -
- - - - - - -
* - * - * - *
- - - - - - -

- - - - - - -
- - - - - - -
- - - - - - -
4 - 1 - 2 - 5
- - - - - - -

360
.
6
3
0

(3,1)
(3,2)
(4,1)
(4,2)
(4,3)

0 10 20 30 40 …90 (1,3)(1,4)(2,3)(2,4)
distance

angle

7

How do you extract the line
segments from the accumulators?

pick the bin of A with highest value V
while V > value_threshold {

order the corresponding pointlist from PTLIST

merge in high gradient neighbors within 10 degrees

create line segment from final point list

zero out that bin of A

pick the bin of A with highest value V }

8

Finding Circles
r = r0 + d sin θ
c = c0 + d cos θ

r, c, d are parametersEquations:

Main idea: The gradient vector at an edge pixel points
to the center of the circle.

*(r,c)
d

9

Why it works

Filled Circle:
Outer points of circle have gradient
direction pointing to center.

Circular Ring:
Outer points gradient towards center.
Inner points gradient away from center.

The points in the away direction don’t
accumulate in one bin!

10

Procedure to Accumulate Circles
• Set accumulator array A to all zero.

Set point list array PTLIST to all NIL.

• For each pixel (R,C) in the image {
For each possible value of D {

- compute gradient magnitude GMAG
- if GMAG > gradient_threshold {

. Compute THETA(R,C,D)

. R0 := R - D*cos(THETA)

. C0 := C - D* sin(THETA)

. increment A(R0,C0,D)

. update PTLIST(R0,C0,D) }}

11

The Burns Line Finder

1. Compute gradient magnitude and direction at each pixel.
2. For high gradient magnitude points, assign direction labels

to two symbolic images for two different quantizations.
3. Find connected components of each symbolic image.

1
23

4
5

6 7
8 1

234
5
6 7 8

45

-22.5

+22.5
0

• Each pixel belongs to 2 components, one for each symbolic image.

• Each pixel votes for its longer component.

• Each component receives a count of pixels who voted for it.

• The components that receive majority support are selected.

12

See transparencies for comparisons.

13

Consistent Line Clusters for Object Recognition
(Yi Li’s Structure Features)

A Consistent Line Cluster is a set of lines
that are homogeneous in terms of some line
features.

Color-CLC: The lines have the same color
feature.

Orientation-CLC: The lines are parallel to each
other or converge to a common vanishing point.

Spatially-CLC: The lines are in close proximity
to each other.

14

Color-CLC

• Color feature of lines: color pair (c1,c2)
• Color pair space:

RGB (2563*2563) Too big!
Dominant colors (20*20)

• Finding the color pairs:
One line → Several color pairs

• Constructing Color-CLC: use clustering

15

Color-CLC

16

Orientation-CLC

• The lines in an Orientation-CLC are
parallel to each other in the 3D world

• The parallel lines of an object in a 2D
image can be:
– Parallel in 2D
– Converging to a vanishing point

(perspective)

17

Orientation-CLC

18

Spatially-CLC

• Vertical position clustering
• Horizontal position clustering

19

Use in Building Recognition (to be
covered in the CBIR lecture)

http://www.cs.washington.edu/research/imagedatabase/demo

http://www.cs.washington.edu/research/imagedatabase/demo

	Finding Line and Curve Segmentsfrom Edge Images
	Edge Tracking Procedure
	Hough Transform
	Finding Straight Line Segments
	Procedure to Accumulate Lines
	Example
	How do you extract the line segments from the accumulators?
	Finding Circles
	Why it works
	Procedure to Accumulate Circles
	The Burns Line Finder
	Consistent Line Clusters for Object Recognition(Yi Li’s Structure Features)
	Color-CLC
	Color-CLC
	Orientation-CLC
	Orientation-CLC
	Spatially-CLC
	Use in Building Recognition (to be covered in the CBIR lecture)

